論文の概要: Exploring LLM Reasoning Through Controlled Prompt Variations
- arxiv url: http://arxiv.org/abs/2504.02111v1
- Date: Wed, 02 Apr 2025 20:18:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:58:30.209771
- Title: Exploring LLM Reasoning Through Controlled Prompt Variations
- Title(参考訳): プロンプト変動制御によるLDM推論の探索
- Authors: Giannis Chatziveroglou, Richard Yun, Maura Kelleher,
- Abstract要約: 我々は,4種類の急激な摂動に直面する場合,最先端モデルが論理的整合性と正当性を維持するかを評価する。
13個のオープンソースおよびクローズドソース LLM を用いて実験を行った結果,モデルコンテキストウィンドウ内に無関係なコンテキストを導入することで,性能が著しく低下することが判明した。
ある摂動は、明示的なプロンプトなしでも、必然的にチェーンオブ思考のような推論行動を引き起こす。
- 参考スコア(独自算出の注目度): 0.9217021281095907
- License:
- Abstract: This study investigates the reasoning robustness of large language models (LLMs) on mathematical problem-solving tasks under systematically introduced input perturbations. Using the GSM8K dataset as a controlled testbed, we evaluate how well state-of-the-art models maintain logical consistency and correctness when confronted with four categories of prompt perturbations: irrelevant context, pathological instructions, factually relevant but non-essential context, and a combination of the latter two. Our experiments, conducted on thirteen open-source and closed-source LLMs, reveal that introducing irrelevant context within the model's context window significantly degrades performance, suggesting that distinguishing essential from extraneous details remains a pressing challenge. Surprisingly, performance regressions are relatively insensitive to the complexity of the reasoning task, as measured by the number of steps required, and are not strictly correlated with model size. Moreover, we observe that certain perturbations inadvertently trigger chain-of-thought-like reasoning behaviors, even without explicit prompting. Our findings highlight critical vulnerabilities in current LLMs and underscore the need for improved robustness against noisy, misleading, and contextually dense inputs, paving the way for more resilient and reliable reasoning in real-world applications.
- Abstract(参考訳): 本研究では,大規模言語モデル (LLM) の数学的問題解問題に対する系統的な入力摂動下でのロバスト性について検討した。
GSM8Kデータセットを制御テストベッドとして使用し、非関連コンテキスト、病理的指示、事実に関連があるが非意味なコンテキスト、および後者の2つの組み合わせの4つの急激な摂動のカテゴリに直面する場合、最先端のモデルが論理的一貫性と正当性を維持するかを評価する。
13のオープンソースおよびクローズドソース LLM で実施した実験により,モデルコンテキストウィンドウ内に無関係なコンテキストを導入することは,性能を著しく低下させることが明らかとなった。
驚くべきことに、性能回帰は、必要なステップ数によって測定されるように、推論タスクの複雑さに比較的敏感であり、モデルサイズと厳密に相関しない。
さらに, ある摂動が, たとえ明示的なプロンプトを伴わずとも, チェーン・オブ・オブ・シントのような推論行動を引き起こすことが観察された。
我々の発見は、現在のLLMの重大な脆弱性を浮き彫りにして、ノイズ、誤解を招くこと、文脈的に密接な入力に対する堅牢性の改善の必要性を強調し、現実世界のアプリケーションにおいてより弾力的で信頼性の高い推論の道を開いた。
関連論文リスト
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Breaking Focus: Contextual Distraction Curse in Large Language Models [68.4534308805202]
大規模言語モデル(LLM)の重大な脆弱性について検討する。
この現象は、セマンティック・コヒーレントだが無関係な文脈で修正された質問に対して、モデルが一貫した性能を維持することができないときに発生する。
本稿では,CDVの例を自動生成する効率的な木探索手法を提案する。
論文 参考訳(メタデータ) (2025-02-03T18:43:36Z) - Bridging Interpretability and Robustness Using LIME-Guided Model Refinement [0.0]
LIME(Local Interpretable Model-Agnostic Explanations)は、モデルロバスト性を体系的に強化する。
複数のベンチマークデータセットに対する実証的な評価は、LIME誘導の洗練は解釈可能性を改善するだけでなく、敵の摂動に対する耐性を著しく向上し、アウト・オブ・ディストリビューションデータへの一般化を促進することを示している。
論文 参考訳(メタデータ) (2024-12-25T17:32:45Z) - Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
我々は,情報理論レンズを用いて,大規模言語モデル(LLM)におけるChain-of-Thought(CoT)推論を定式化する。
具体的には、各推論ステップにおける情報ゲインの定量化を行い、障害モードの識別を可能にする。
提案手法の有効性を,玩具およびGSM-8Kデータに対する広範囲な実験により実証し,既存の結果に基づく手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-11-18T19:14:36Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models [12.112914393948415]
RUPBenchは,多種多様な推論タスクにわたる大規模言語モデル(LLM)を評価するために設計されたベンチマークである。
我々のベンチマークには15の推論データセットが組み込まれており、コモンセンス、算術、論理、知識集約推論に分類されている。
GPT-4o, Llama3, Phi-3, Gemmaといった最先端のLCMの原文および摂動データセットの性能を調べることにより, その堅牢性およびエラーパターンを詳細に解析する。
論文 参考訳(メタデータ) (2024-06-16T17:26:44Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Seeing is not Believing: Robust Reinforcement Learning against Spurious
Correlation [57.351098530477124]
国家の異なる部分には、保存されていない共同設立者が引き起こす相関関係が存在しない。
このような役に立たないあるいは有害な相関を学習するモデルは、テストケースの共同創設者がトレーニングケースから逸脱したときに破滅的に失敗する可能性がある。
したがって、単純かつ非構造的な不確実性集合を仮定する既存の頑健なアルゴリズムは、この問題に対処するには不十分である。
論文 参考訳(メタデータ) (2023-07-15T23:53:37Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。