論文の概要: RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models
- arxiv url: http://arxiv.org/abs/2406.11020v1
- Date: Sun, 16 Jun 2024 17:26:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-18 19:23:12.326584
- Title: RUPBench: Benchmarking Reasoning Under Perturbations for Robustness Evaluation in Large Language Models
- Title(参考訳): RUPBench:大規模言語モデルにおけるロバスト性評価のための摂動下でのベンチマーク
- Authors: Yuqing Wang, Yun Zhao,
- Abstract要約: RUPBenchは,多種多様な推論タスクにわたる大規模言語モデル(LLM)を評価するために設計されたベンチマークである。
我々のベンチマークには15の推論データセットが組み込まれており、コモンセンス、算術、論理、知識集約推論に分類されている。
GPT-4o, Llama3, Phi-3, Gemmaといった最先端のLCMの原文および摂動データセットの性能を調べることにより, その堅牢性およびエラーパターンを詳細に解析する。
- 参考スコア(独自算出の注目度): 12.112914393948415
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the increasing use of large language models (LLMs), ensuring reliable performance in diverse, real-world environments is essential. Despite their remarkable achievements, LLMs often struggle with adversarial inputs, significantly impacting their effectiveness in practical applications. To systematically understand the robustness of LLMs, we present RUPBench, a comprehensive benchmark designed to evaluate LLM robustness across diverse reasoning tasks. Our benchmark incorporates 15 reasoning datasets, categorized into commonsense, arithmetic, logical, and knowledge-intensive reasoning, and introduces nine types of textual perturbations at lexical, syntactic, and semantic levels. By examining the performance of state-of-the-art LLMs such as GPT-4o, Llama3, Phi-3, and Gemma on both original and perturbed datasets, we provide a detailed analysis of their robustness and error patterns. Our findings highlight that larger models tend to exhibit greater robustness to perturbations. Additionally, common error types are identified through manual inspection, revealing specific challenges faced by LLMs in different reasoning contexts. This work provides insights into areas where LLMs need further improvement to handle diverse and noisy inputs effectively.
- Abstract(参考訳): 大規模言語モデル(LLM)の利用の増加に伴い、多様な実環境において信頼性の高い性能を確保することが不可欠である。
彼らの顕著な業績にもかかわらず、LLMは敵の入力に苦しむことが多く、実際的な応用においてその効果に大きな影響を及ぼした。
LLMのロバスト性を体系的に理解するために,多種多様な推論タスクにおけるLLMロバスト性を評価するための総合的なベンチマークRUPBenchを提案する。
本ベンチマークでは,コモンセンス,算術,論理,知識集約的推論に分類された15の推論データセットを取り入れ,語彙,構文,意味レベルにおいて9種類のテキスト摂動を導入する。
GPT-4o, Llama3, Phi-3, Gemmaといった最先端のLCMの原文および摂動データセットの性能を調べることにより, その堅牢性およびエラーパターンを詳細に解析する。
以上の結果から,大きなモデルでは摂動に対する堅牢性が高い傾向が示唆された。
加えて、一般的なエラータイプは手動検査によって特定され、異なる推論コンテキストにおいてLLMが直面している特定の課題を明らかにする。
この研究は、LLMが多様でノイズの多い入力を効果的に処理するためにさらなる改善を必要としている領域についての洞察を提供する。
関連論文リスト
- Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - Learning on Graphs with Large Language Models(LLMs): A Deep Dive into Model Robustness [39.57155321515097]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示している。
LLMがグラフ上での学習において堅牢性を示すかどうかは不明である。
論文 参考訳(メタデータ) (2024-07-16T09:05:31Z) - Exposing the Achilles' Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning [11.63133816413199]
大言語モデル (LLM) は数学語問題 (MWP) に適用されている。
本稿では,ルールベース手法とより小さな言語モデルにより生成される正しい推論ステップと誤推論ステップをMWPに組み込んだ,新しいデータセットMWP-MISTAKEを提案する。
GPT-$oの誤り検出と修正における優れた性能と、より小さなモデルで直面する永続的な課題を強調した。
論文 参考訳(メタデータ) (2024-06-16T08:06:05Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
本稿では,Felmと呼ばれる大規模言語モデルのファクチュアリティ評価のためのベンチマークを紹介する。
我々は,大規模言語モデルから生成された応答を収集し,微粒な方法で事実ラベルを注釈付けする。
その結果,検索は事実性評価に役立つが,現在のLCMは事実の誤りを忠実に検出するには不十分であることがわかった。
論文 参考訳(メタデータ) (2023-10-01T17:37:31Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。