One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image
- URL: http://arxiv.org/abs/2504.02132v2
- Date: Wed, 11 Jun 2025 15:07:55 GMT
- Title: One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image
- Authors: Ezzeldin Shereen, Dan Ristea, Shae McFadden, Burak Hasircioglu, Vasilios Mavroudis, Chris Hicks,
- Abstract summary: Multi-modal retrieval augmented generation (M-RAG) is instrumental for inhibiting hallucinations in large multi-modal models (LMMs)<n>M-RAG introduces new attack vectors for adversaries that aim to disrupt the system by injecting malicious entries into the factual knowledge base (KB)
- Score: 1.517355052203938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal retrieval augmented generation (M-RAG) is instrumental for inhibiting hallucinations in large multi-modal models (LMMs) through the use of a factual knowledge base (KB). However, M-RAG introduces new attack vectors for adversaries that aim to disrupt the system by injecting malicious entries into the KB. In this paper, we present the first poisoning attack against M-RAG targeting visual document retrieval applications where the KB contains images of document pages. We propose two attacks, each of which require injecting only a single adversarial image into the KB. Firstly, we propose a universal attack that, for any potential user query, influences the response to cause a denial-of-service (DoS) in the M-RAG system. Secondly, we present a targeted attack against one or a group of user queries, with the goal of spreading targeted misinformation. For both attacks, we use a multi-objective gradient-based adversarial approach to craft the injected image while optimizing for both retrieval and generation. We evaluate our attacks against several visual document retrieval datasets, a diverse set of state-of-the-art retrievers (embedding models) and generators (LMMs), demonstrating the attack effectiveness in both the universal and targeted settings. We additionally present results including commonly used defenses, various attack hyper-parameter settings, ablations, and attack transferability.
Related papers
- CtrlRAG: Black-box Adversarial Attacks Based on Masked Language Models in Retrieval-Augmented Language Generation [0.0]
Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by integrating external knowledge bases.<n>We propose CtrlRAG, a novel attack method designed for RAG system in the black-box setting, which aligns with real-world scenarios.<n> Experimental results demonstrate that CtrlRAG outperforms three baseline methods in both Emotional Manipulation and Hallucination Amplification objectives.
arXiv Detail & Related papers (2025-03-10T05:55:15Z) - Poisoned-MRAG: Knowledge Poisoning Attacks to Multimodal Retrieval Augmented Generation [71.32665836294103]
Multimodal retrieval-augmented generation (RAG) enhances the visual reasoning capability of vision-language models (VLMs)<n>In this work, we introduce textitPoisoned-MRAG, the first knowledge poisoning attack on multimodal RAG systems.
arXiv Detail & Related papers (2025-03-08T15:46:38Z) - Retrievals Can Be Detrimental: A Contrastive Backdoor Attack Paradigm on Retrieval-Augmented Diffusion Models [37.66349948811172]
Diffusion models (DMs) have recently demonstrated remarkable generation capability.<n>Recent studies empower DMs with the advanced Retrieval-Augmented Generation (RAG) technique.<n>RAG enhances DMs' generation and generalization ability while significantly reducing model parameters.<n>Despite the great success, RAG may introduce novel security issues that warrant further investigation.
arXiv Detail & Related papers (2025-01-23T02:42:28Z) - Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
We build a new laRge-scale Adervsarial images dataset with Diverse hArmful Responses (RADAR)
We then develop a novel iN-time Embedding-based AdveRSarial Image DEtection (NEARSIDE) method, which exploits a single vector that distilled from the hidden states of Visual Language Models (VLMs) to achieve the detection of adversarial images against benign ones in the input.
arXiv Detail & Related papers (2024-10-30T10:33:10Z) - Phantom: General Trigger Attacks on Retrieval Augmented Language Generation [30.63258739968483]
Retrieval Augmented Generation (RAG) expands the capabilities of modern large language models (LLMs)
We propose new attack vectors that allow an adversary to inject a single malicious document into a RAG system's knowledge base, and mount a backdoor poisoning attack.
We demonstrate our attacks on multiple LLM architectures, including Gemma, Vicuna, and Llama, and show that they transfer to GPT-3.5 Turbo and GPT-4.
arXiv Detail & Related papers (2024-05-30T21:19:24Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
We propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within Large Vision-Language Models.
Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input.
An adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions.
arXiv Detail & Related papers (2024-05-28T07:13:30Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Targeted Attack Improves Protection against Unauthorized Diffusion Customization [3.1678356835951273]
Diffusion models build a new milestone for image generation yet raising public concerns.
They can be fine-tuned on unauthorized images for customization.
Current protection, leveraging untargeted attacks, does not appear to be effective enough.
We propose a simple yet effective improvement for the protection against unauthorized diffusion customization by introducing targeted attacks.
arXiv Detail & Related papers (2023-10-07T05:24:42Z) - PRAT: PRofiling Adversarial aTtacks [52.693011665938734]
We introduce a novel problem of PRofiling Adversarial aTtacks (PRAT)
Given an adversarial example, the objective of PRAT is to identify the attack used to generate it.
We use AID to devise a novel framework for the PRAT objective.
arXiv Detail & Related papers (2023-09-20T07:42:51Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - GLOW: Global Layout Aware Attacks for Object Detection [27.46902978168904]
Adversarial attacks aim to perturb images such that a predictor outputs incorrect results.
We present first approach that copes with various attack requests by generating global layout-aware adversarial attacks.
In experiment, we design multiple types of attack requests and validate our ideas on MS validation set.
arXiv Detail & Related papers (2023-02-27T22:01:34Z) - Generalizable Black-Box Adversarial Attack with Meta Learning [54.196613395045595]
In black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful perturbation based on query feedback under a query budget.
We propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability.
The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance.
arXiv Detail & Related papers (2023-01-01T07:24:12Z) - GAMA: Generative Adversarial Multi-Object Scene Attacks [48.33120361498787]
This paper presents the first approach of using generative models for adversarial attacks on multi-object scenes.
We call this attack approach Generative Adversarial Multi-object scene Attacks (GAMA)
arXiv Detail & Related papers (2022-09-20T06:40:54Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
Adversarial attacks perturb images such that a deep neural network produces incorrect classification results.
A promising approach to defend against adversarial attacks on natural multi-object scenes is to impose a context-consistency check.
We present the first approach for generating context-consistent adversarial attacks that can evade the context-consistency check.
arXiv Detail & Related papers (2022-03-29T04:33:06Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp
Adversarial Attacks [154.31827097264264]
Adversarial training is a popular defense strategy against attack threat models with bounded Lp norms.
We propose Dual Manifold Adversarial Training (DMAT) where adversarial perturbations in both latent and image spaces are used in robustifying the model.
Our DMAT improves performance on normal images, and achieves comparable robustness to the standard adversarial training against Lp attacks.
arXiv Detail & Related papers (2020-09-05T06:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.