CtrlRAG: Black-box Adversarial Attacks Based on Masked Language Models in Retrieval-Augmented Language Generation
- URL: http://arxiv.org/abs/2503.06950v1
- Date: Mon, 10 Mar 2025 05:55:15 GMT
- Title: CtrlRAG: Black-box Adversarial Attacks Based on Masked Language Models in Retrieval-Augmented Language Generation
- Authors: Runqi Sui,
- Abstract summary: Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by integrating external knowledge bases.<n>We propose CtrlRAG, a novel attack method designed for RAG system in the black-box setting, which aligns with real-world scenarios.<n> Experimental results demonstrate that CtrlRAG outperforms three baseline methods in both Emotional Manipulation and Hallucination Amplification objectives.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by integrating external knowledge bases. However, this integration introduces a new security threat: adversaries can exploit the retrieval mechanism to inject malicious content into the knowledge base, thereby influencing the generated responses. Based on this attack vector, we propose CtrlRAG, a novel attack method designed for RAG system in the black-box setting, which aligns with real-world scenarios. Unlike existing attack methods, CtrlRAG introduces a perturbation mechanism using Masked Language Model (MLM) to dynamically optimize malicious content in response to changes in the retrieved context. Experimental results demonstrate that CtrlRAG outperforms three baseline methods in both Emotional Manipulation and Hallucination Amplification objectives. Furthermore, we evaluate three existing defense mechanisms, revealing their limited effectiveness against CtrlRAG and underscoring the urgent need for more robust defenses.
Related papers
- Defending Against Knowledge Poisoning Attacks During Retrieval-Augmented Generation [9.625480143413405]
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to boost the capabilities of large language models (LLMs)<n>One such attack is the PoisonedRAG in which the injected adversarial texts steer the model to generate an attacker-chosen response to a target question.<n>We propose novel defense methods, FilterRAG and ML-FilterRAG, to mitigate the PoisonedRAG attack.
arXiv Detail & Related papers (2025-08-04T19:03:52Z) - A Survey on Model Extraction Attacks and Defenses for Large Language Models [55.60375624503877]
Model extraction attacks pose significant security threats to deployed language models.<n>This survey provides a comprehensive taxonomy of extraction attacks and defenses, categorizing attacks into functionality extraction, training data extraction, and prompt-targeted attacks.<n>We examine defense mechanisms organized into model protection, data privacy protection, and prompt-targeted strategies, evaluating their effectiveness across different deployment scenarios.
arXiv Detail & Related papers (2025-06-26T22:02:01Z) - The Silent Saboteur: Imperceptible Adversarial Attacks against Black-Box Retrieval-Augmented Generation Systems [101.68501850486179]
We explore adversarial attacks against retrieval-augmented generation (RAG) systems to identify their vulnerabilities.<n>This task aims to find imperceptible perturbations that retrieve a target document, originally excluded from the initial top-$k$ candidate set.<n>We propose ReGENT, a reinforcement learning-based framework that tracks interactions between the attacker and the target RAG.
arXiv Detail & Related papers (2025-05-24T08:19:25Z) - Hoist with His Own Petard: Inducing Guardrails to Facilitate Denial-of-Service Attacks on Retrieval-Augmented Generation of LLMs [8.09404178079053]
Retrieval-Augmented Generation (RAG) integrates Large Language Models (LLMs) with external knowledge bases, improving output quality while introducing new security risks.
Existing studies on RAG vulnerabilities typically focus on exploiting the retrieval mechanism to inject erroneous knowledge or malicious texts, inducing incorrect outputs.
In this paper, we uncover a novel vulnerability: the safety guardrails of LLMs, while designed for protection, can also be exploited as an attack vector by adversaries. Building on this vulnerability, we propose MutedRAG, a novel denial-of-service attack that reversely leverages the guardrails to undermine the availability of
arXiv Detail & Related papers (2025-04-30T14:18:11Z) - PR-Attack: Coordinated Prompt-RAG Attacks on Retrieval-Augmented Generation in Large Language Models via Bilevel Optimization [13.751251342738225]
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of applications.
They also exhibit inherent limitations, such as outdated knowledge and susceptibility to hallucinations.
Recent efforts have focused on the security of RAG-based LLMs, yet existing attack methods face three critical challenges.
We propose coordinated Prompt-RAG attack (PR-attack), a novel optimization-driven attack that introduces a small number of poisoned texts into the knowledge database.
arXiv Detail & Related papers (2025-04-10T13:09:50Z) - MIRAGE: Multimodal Immersive Reasoning and Guided Exploration for Red-Team Jailbreak Attacks [85.3303135160762]
MIRAGE is a novel framework that exploits narrative-driven context and role immersion to circumvent safety mechanisms in Multimodal Large Language Models.
It achieves state-of-the-art performance, improving attack success rates by up to 17.5% over the best baselines.
We demonstrate that role immersion and structured semantic reconstruction can activate inherent model biases, facilitating the model's spontaneous violation of ethical safeguards.
arXiv Detail & Related papers (2025-03-24T20:38:42Z) - Poisoned-MRAG: Knowledge Poisoning Attacks to Multimodal Retrieval Augmented Generation [71.32665836294103]
Multimodal retrieval-augmented generation (RAG) enhances the visual reasoning capability of vision-language models (VLMs)
In this work, we introduce textitPoisoned-MRAG, the first knowledge poisoning attack on multimodal RAG systems.
arXiv Detail & Related papers (2025-03-08T15:46:38Z) - MM-PoisonRAG: Disrupting Multimodal RAG with Local and Global Poisoning Attacks [109.53357276796655]
Multimodal large language models (MLLMs) equipped with Retrieval Augmented Generation (RAG)<n>RAG enhances MLLMs by grounding responses in query-relevant external knowledge.<n>This reliance poses a critical yet underexplored safety risk: knowledge poisoning attacks.<n>We propose MM-PoisonRAG, a novel knowledge poisoning attack framework with two attack strategies.
arXiv Detail & Related papers (2025-02-25T04:23:59Z) - Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.<n>It reformulates harmful queries into benign reasoning tasks.<n>We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - FlipedRAG: Black-Box Opinion Manipulation Attacks to Retrieval-Augmented Generation of Large Language Models [19.41533176888415]
Retrieval-Augmented Generation (RAG) addresses hallucination and real-time constraints by dynamically retrieving relevant information from a knowledge database.<n>In this paper, we unveil a more realistic and threatening scenario: opinion manipulation for controversial topics against RAG.<n>We propose a novel RAG black-box attack method, termed FlipedRAG, which is transfer-based.
arXiv Detail & Related papers (2025-01-06T12:24:57Z) - TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation [31.231916859341865]
TrustRAG is a framework that systematically filters malicious and irrelevant content before it is retrieved for generation.<n>TrustRAG delivers substantial improvements in retrieval accuracy, efficiency, and attack resistance.
arXiv Detail & Related papers (2025-01-01T15:57:34Z) - Towards More Robust Retrieval-Augmented Generation: Evaluating RAG Under Adversarial Poisoning Attacks [45.07581174558107]
Retrieval-Augmented Generation (RAG) systems have emerged as a promising solution to mitigate hallucinations.<n>RAG systems are vulnerable to adversarial poisoning attacks, where malicious passages injected into the retrieval corpus can mislead models into producing factually incorrect outputs.<n>We present a rigorously controlled empirical study of how RAG systems behave under such attacks and how their robustness can be improved.
arXiv Detail & Related papers (2024-12-21T17:31:52Z) - HijackRAG: Hijacking Attacks against Retrieval-Augmented Large Language Models [18.301965456681764]
We reveal a novel vulnerability, the retrieval prompt hijack attack (HijackRAG)
HijackRAG enables attackers to manipulate the retrieval mechanisms of RAG systems by injecting malicious texts into the knowledge database.
We propose both black-box and white-box attack strategies tailored to different levels of the attacker's knowledge.
arXiv Detail & Related papers (2024-10-30T09:15:51Z) - Imposter.AI: Adversarial Attacks with Hidden Intentions towards Aligned Large Language Models [13.225041704917905]
This study unveils an attack mechanism that capitalizes on human conversation strategies to extract harmful information from large language models.
Unlike conventional methods that target explicit malicious responses, our approach delves deeper into the nature of the information provided in responses.
arXiv Detail & Related papers (2024-07-22T06:04:29Z) - Black-Box Opinion Manipulation Attacks to Retrieval-Augmented Generation of Large Language Models [21.01313168005792]
We reveal the vulnerabilities of Retrieval-Enhanced Generative (RAG) models when faced with black-box attacks for opinion manipulation.
We explore the impact of such attacks on user cognition and decision-making.
arXiv Detail & Related papers (2024-07-18T17:55:55Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs)
In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases.
arXiv Detail & Related papers (2024-06-26T05:36:23Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.<n>We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.<n>We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - Can We Trust Embodied Agents? Exploring Backdoor Attacks against Embodied LLM-based Decision-Making Systems [27.316115171846953]
Large Language Models (LLMs) have shown significant promise in real-world decision-making tasks for embodied AI.
LLMs are fine-tuned to leverage their inherent common sense and reasoning abilities while being tailored to specific applications.
This fine-tuning process introduces considerable safety and security vulnerabilities, especially in safety-critical cyber-physical systems.
arXiv Detail & Related papers (2024-05-27T17:59:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.