論文の概要: LL4G: Self-Supervised Dynamic Optimization for Graph-Based Personality Detection
- arxiv url: http://arxiv.org/abs/2504.02146v1
- Date: Wed, 02 Apr 2025 21:46:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:58:07.281398
- Title: LL4G: Self-Supervised Dynamic Optimization for Graph-Based Personality Detection
- Title(参考訳): LL4G:グラフに基づく個人性検出のための動的最適化
- Authors: Lingzhi Shen, Yunfei Long, Xiaohao Cai, Guanming Chen, Yuhan Wang, Imran Razzak, Shoaib Jameel,
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)を最適化する自己教師型フレームワークLL4Gを紹介する。
LL4Gは大規模言語モデル(LLM)を利用してグラフニューラルネットワーク(GNN)を最適化する自己教師型フレームワークである
KaggleとPandoraのデータセットの実験結果は、LL4Gが最先端モデルを上回っていることを示している。
- 参考スコア(独自算出の注目度): 15.21447289641142
- License:
- Abstract: Graph-based personality detection constructs graph structures from textual data, particularly social media posts. Current methods often struggle with sparse or noisy data and rely on static graphs, limiting their ability to capture dynamic changes between nodes and relationships. This paper introduces LL4G, a self-supervised framework leveraging large language models (LLMs) to optimize graph neural networks (GNNs). LLMs extract rich semantic features to generate node representations and to infer explicit and implicit relationships. The graph structure adaptively adds nodes and edges based on input data, continuously optimizing itself. The GNN then uses these optimized representations for joint training on node reconstruction, edge prediction, and contrastive learning tasks. This integration of semantic and structural information generates robust personality profiles. Experimental results on Kaggle and Pandora datasets show LL4G outperforms state-of-the-art models.
- Abstract(参考訳): グラフに基づく人格検出は、テキストデータ、特にソーシャルメディア投稿からグラフ構造を構築する。
現在のメソッドはスパースやノイズの多いデータに悩まされ、静的グラフに依存し、ノードとリレーション間の動的変化をキャプチャする能力を制限する。
本稿では,大規模言語モデル(LLM)を利用してグラフニューラルネットワーク(GNN)を最適化する自己教師型フレームワークであるLL4Gを紹介する。
LLMは、ノード表現を生成し、明示的および暗黙的な関係を推測するために、豊富な意味的特徴を抽出する。
グラフ構造は、入力データに基づいてノードとエッジを適応的に追加し、自分自身を継続的に最適化する。
次に、GNNはこれらの最適化された表現を使用して、ノード再構成、エッジ予測、コントラスト学習タスクのジョイントトレーニングを行う。
この意味情報と構造情報の統合は、ロバストなパーソナリティプロファイルを生成する。
KaggleとPandoraのデータセットの実験結果は、LL4Gが最先端モデルを上回っていることを示している。
関連論文リスト
- GraphEdit: Large Language Models for Graph Structure Learning [14.16155596597421]
グラフ構造学習(GSL)は、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てている。
既存のGSL法は、監督信号として明示的なグラフ構造情報に大きく依存している。
グラフ構造化データの複雑なノード関係を学習するために,大規模言語モデル(LLM)を利用したグラフ編集を提案する。
論文 参考訳(メタデータ) (2024-02-23T08:29:42Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - TREE-G: Decision Trees Contesting Graph Neural Networks [33.364191419692105]
TREE-Gは、グラフデータに特化した新しい分割関数を導入することで、標準的な決定木を変更する。
グラフニューラルネットワーク(GNN)やグラフカーネル(Graph Kernels)などのグラフ学習アルゴリズムでは,TREE-Gが他のツリーベースモデルより一貫して優れていることが示されています。
論文 参考訳(メタデータ) (2022-07-06T15:53:17Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Multi-grained Semantics-aware Graph Neural Networks [13.720544777078642]
グラフニューラルネットワーク(GNN)は、グラフの表現学習において強力な技術である。
本研究では,ノードとグラフ表現を対話的に学習する統合モデルAdamGNNを提案する。
14の実世界のグラフデータセットに対する実験により、AdamGNNはノードとグラフの両方のタスクにおいて17の競合するモデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2020-10-01T07:52:06Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。