Multivariate Temporal Regression at Scale: A Three-Pillar Framework Combining ML, XAI, and NLP
- URL: http://arxiv.org/abs/2504.02151v1
- Date: Wed, 02 Apr 2025 21:53:03 GMT
- Title: Multivariate Temporal Regression at Scale: A Three-Pillar Framework Combining ML, XAI, and NLP
- Authors: Jiztom Kavalakkatt Francis, Matthew J Darr,
- Abstract summary: This paper dives into the hurdles of analyzing high-dimensional data, especially when it gets too complex.<n>Traditional methods in data analysis often look at direct connections between input variables, which can miss out on the more complicated relationships within the data.<n>We consider the role of synthetic data and how information can sometimes be redundant across different sensors.
- Score: 1.331812695405053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid use of artificial intelligence (AI) in processes such as coding, image processing, and data prediction means it is crucial to understand and validate the data we are working with fully. This paper dives into the hurdles of analyzing high-dimensional data, especially when it gets too complex. Traditional methods in data analysis often look at direct connections between input variables, which can miss out on the more complicated relationships within the data. To address these issues, we explore several tested techniques, such as removing specific variables to see their impact and using statistical analysis to find connections between multiple variables. We also consider the role of synthetic data and how information can sometimes be redundant across different sensors. These analyses are typically very computationally demanding and often require much human effort to make sense of the results. A common approach is to treat the entire dataset as one unit and apply advanced models to handle it. However, this can become problematic with larger, noisier datasets and more complex models. So, we suggest methods to identify overall patterns that can help with tasks like classification or regression based on the idea that more straightforward approaches might be more understandable. Our research looks at two datasets: a real-world dataset and a synthetic one. The goal is to create a methodology that highlights key features on a global scale that lead to predictions, making it easier to validate or quantify the data set. By reducing the dimensionality with this method, we can simplify the models used and thus clarify the insights we gain. Furthermore, our method can reveal unexplored relationships between specific inputs and outcomes, providing a way to validate these new connections further.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - Selective Embedding for Deep Learning [0.4499833362998489]
Deep learning algorithms are sensitive to input data, and performance often deteriorates under nonstationary conditions.<n>This study introduces selective embedding, a novel data loading strategy, which alternates short segments of data from multiple sources within a single input channel.
arXiv Detail & Related papers (2025-07-16T15:45:01Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Reinforced Interactive Continual Learning via Real-time Noisy Human Feedback [59.768119380109084]
This paper introduces an interactive continual learning paradigm where AI models dynamically learn new skills from real-time human feedback.<n>We propose RiCL, a Reinforced interactive Continual Learning framework leveraging Large Language Models (LLMs)<n>Our RiCL approach substantially outperforms existing combinations of state-of-the-art online continual learning and noisy-label learning methods.
arXiv Detail & Related papers (2025-05-15T03:22:03Z) - Generative QoE Modeling: A Lightweight Approach for Telecom Networks [6.473372512447993]
This study introduces a lightweight generative modeling framework that balances computational efficiency, interpretability, and predictive accuracy.<n>By validating the use of Vector Quantization (VQ) as a preprocessing technique, continuous network features are effectively transformed into discrete categorical symbols.<n>This VQ-HMM pipeline enhances the model's capacity to capture dynamic QoE patterns while supporting probabilistic inference on new and unseen data.
arXiv Detail & Related papers (2025-04-30T06:19:37Z) - SCENT: Robust Spatiotemporal Learning for Continuous Scientific Data via Scalable Conditioned Neural Fields [11.872753517172555]
We present SCENT, a novel framework for scalable and continuity-informed modeling learning.<n>SCENT unifies representation, reconstruction, and forecasting within a single architecture.<n>We validate SCENT through extensive simulations and real-world experiments, demonstrating state-of-the-art performance.
arXiv Detail & Related papers (2025-04-16T17:17:31Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Explaining Categorical Feature Interactions Using Graph Covariance and LLMs [18.44675735926458]
This paper focuses on the global synthetic dataset from the Counter Trafficking Data Collaborative.<n>It contains over 200,000 anonymized records spanning from 2002 to 2022 with numerous categorical features for each record.<n>We propose a fast and scalable method for analyzing and extracting significant categorical feature interactions.
arXiv Detail & Related papers (2025-01-24T21:41:26Z) - Towards Human-Guided, Data-Centric LLM Co-Pilots [53.35493881390917]
CliMB-DC is a human-guided, data-centric framework for machine learning co-pilots.<n>It combines advanced data-centric tools with LLM-driven reasoning to enable robust, context-aware data processing.<n>We show how CliMB-DC can transform uncurated datasets into ML-ready formats.
arXiv Detail & Related papers (2025-01-17T17:51:22Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
patio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management.
We introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods.
arXiv Detail & Related papers (2024-08-26T16:11:53Z) - D3A-TS: Denoising-Driven Data Augmentation in Time Series [0.0]
This work focuses on studying and analyzing the use of different techniques for data augmentation in time series for classification and regression problems.
The proposed approach involves the use of diffusion probabilistic models, which have recently achieved successful results in the field of Image Processing.
The results highlight the high utility of this methodology in creating synthetic data to train classification and regression models.
arXiv Detail & Related papers (2023-12-09T11:37:07Z) - GATGPT: A Pre-trained Large Language Model with Graph Attention Network
for Spatiotemporal Imputation [19.371155159744934]
In real-world settings, such data often contain missing elements due to issues like sensor malfunctions and data transmission errors.
The objective oftemporal imputation is to estimate these missing values by understanding the inherent spatial and temporal relationships in the observed time series.
Traditionally, intricatetemporal imputation has relied on specific architectures, which suffer from limited applicability and high computational complexity.
In contrast our approach integrates pre-trained large language models (LLMs) into intricatetemporal imputation, introducing a groundbreaking framework, GATGPT.
arXiv Detail & Related papers (2023-11-24T08:15:11Z) - On Inductive Biases for Machine Learning in Data Constrained Settings [0.0]
This thesis explores a different answer to the problem of learning expressive models in data constrained settings.
Instead of relying on big datasets to learn neural networks, we will replace some modules by known functions reflecting the structure of the data.
Our approach falls under the hood of "inductive biases", which can be defined as hypothesis on the data at hand restricting the space of models to explore.
arXiv Detail & Related papers (2023-02-21T14:22:01Z) - Detection of Interacting Variables for Generalized Linear Models via
Neural Networks [0.0]
We present an approach to automating the process of finding interactions that should be added to generalized linear models (GLMs)
Our approach relies on neural networks and a model-specific interaction detection method, which is computationally faster than the traditionally used methods like Friedman H-Statistic or SHAP values.
In numerical studies, we provide the results of our approach on artificially generated data as well as open-source data.
arXiv Detail & Related papers (2022-09-16T16:16:45Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
Learning on small data that approximates the generalization ability of big data is one of the ultimate purposes of AI.
This survey follows the active sampling theory under a PAC framework to analyze the generalization error and label complexity of learning on small data.
Multiple data applications that may benefit from efficient small data representation are surveyed.
arXiv Detail & Related papers (2022-07-29T02:34:19Z) - Deep Learning and Handheld Augmented Reality Based System for Optimal
Data Collection in Fault Diagnostics Domain [0.0]
This paper presents a novel human-machine interaction framework to perform fault diagnostics with minimal data.
Minimizing the required data will increase the practicability of data-driven models in diagnosing faults.
The proposed framework has provided above 100% precision and recall on a novel dataset with only one instance of each fault condition.
arXiv Detail & Related papers (2022-06-15T19:15:26Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z) - Visual Neural Decomposition to Explain Multivariate Data Sets [13.117139248511783]
Investigating relationships between variables in multi-dimensional data sets is a common task for data analysts and engineers.
We propose a novel approach to visualize correlations between input variables and a target output variable that scales to hundreds of variables.
arXiv Detail & Related papers (2020-09-11T15:53:37Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.