Neural Style Transfer for Synthesising a Dataset of Ancient Egyptian Hieroglyphs
- URL: http://arxiv.org/abs/2504.02163v1
- Date: Wed, 02 Apr 2025 22:30:45 GMT
- Title: Neural Style Transfer for Synthesising a Dataset of Ancient Egyptian Hieroglyphs
- Authors: Lewis Matheson Creed,
- Abstract summary: This paper presents a novel method for generating datasets of ancient Egyptian hieroglyphs by applying NST to a digital typeface.<n> Experimental results found that image classification models trained on NST-generated examples and photographs demonstrate equal performance and transferability to real unseen images of hieroglyphs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The limited availability of training data for low-resource languages makes applying machine learning techniques challenging. Ancient Egyptian is one such language with few resources. However, innovative applications of data augmentation methods, such as Neural Style Transfer, could overcome these barriers. This paper presents a novel method for generating datasets of ancient Egyptian hieroglyphs by applying NST to a digital typeface. Experimental results found that image classification models trained on NST-generated examples and photographs demonstrate equal performance and transferability to real unseen images of hieroglyphs.
Related papers
- HieroLM: Egyptian Hieroglyph Recovery with Next Word Prediction Language Model [1.1510009152620668]
Egyptian hieroglyphs are found on numerous ancient Egyptian artifacts, but it is common that they are blurry or even missing due to erosion.<n>Existing efforts to restore blurry hieroglyphs adopt computer vision techniques such as CNNs and model hieroglyph recovery as an image classification task.<n>This paper proposes a novel approach to model hieroglyph recovery as a next word prediction task and use language models to address it.
arXiv Detail & Related papers (2025-03-06T21:53:49Z) - Few-shot Calligraphy Style Learning [0.0]
"Presidifussion" is a novel approach to learning and replicating the unique style of calligraphy of President Xu.
We introduce innovative techniques of font image conditioning and stroke information conditioning, enabling the model to capture the intricate structural elements of Chinese characters.
This work not only presents a breakthrough in the digital preservation of calligraphic art but also sets a new standard for data-efficient generative modeling in the domain of cultural heritage digitization.
arXiv Detail & Related papers (2024-04-26T07:17:09Z) - Deep Aramaic: Towards a Synthetic Data Paradigm Enabling Machine
Learning in Epigraphy [6.281814525187968]
Our research pioneers an innovative methodology for generating synthetic training data tailored to Old Aramaic letters.
Our pipeline synthesizes photo-realistic Aramaic letter inscription, incorporating textural features, lighting, damage, and augmentations.
This comprehensive corpus provides a robust volume of data for training a residual neural network (ResNet) to classify highly degraded Aramaic letters.
arXiv Detail & Related papers (2023-10-11T08:47:29Z) - GlyphDiffusion: Text Generation as Image Generation [100.98428068214736]
We propose GlyphDiffusion, a novel diffusion approach for text generation via text-guided image generation.
Our key idea is to render the target text as a glyph image containing visual language content.
Our model also makes significant improvements compared to the recent diffusion model.
arXiv Detail & Related papers (2023-04-25T02:14:44Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - AGTGAN: Unpaired Image Translation for Photographic Ancient Character
Generation [27.77329906930072]
We propose an unsupervised generative adversarial network called AGTGAN.
By explicit global and local glyph shape style modeling, our method can generate characters with diverse glyphs and realistic textures.
With our generated images, experiments on the largest photographic oracle bone character dataset show that our method can achieve a significant increase in classification accuracy, up to 16.34%.
arXiv Detail & Related papers (2023-03-13T11:18:41Z) - Lafite2: Few-shot Text-to-Image Generation [132.14211027057766]
We propose a novel method for pre-training text-to-image generation model on image-only datasets.
It considers a retrieval-then-optimization procedure to synthesize pseudo text features.
It can be beneficial to a wide range of settings, including the few-shot, semi-supervised and fully-supervised learning.
arXiv Detail & Related papers (2022-10-25T16:22:23Z) - One-shot Compositional Data Generation for Low Resource Handwritten Text
Recognition [10.473427493876422]
Low resource Handwritten Text Recognition is a hard problem due to the scarce annotated data and the very limited linguistic information.
In this paper we address this problem through a data generation technique based on Bayesian Program Learning.
Contrary to traditional generation approaches, which require a huge amount of annotated images, our method is able to generate human-like handwriting using only one sample of each symbol from the desired alphabet.
arXiv Detail & Related papers (2021-05-11T18:53:01Z) - Word Shape Matters: Robust Machine Translation with Visual Embedding [78.96234298075389]
We introduce a new encoding of the input symbols for character-level NLP models.
It encodes the shape of each character through the images depicting the letters when printed.
We name this new strategy visual embedding and it is expected to improve the robustness of NLP models.
arXiv Detail & Related papers (2020-10-20T04:08:03Z) - On Long-Tailed Phenomena in Neural Machine Translation [50.65273145888896]
State-of-the-art Neural Machine Translation (NMT) models struggle with generating low-frequency tokens.
We propose a new loss function, the Anti-Focal loss, to better adapt model training to the structural dependencies of conditional text generation.
We show the efficacy of the proposed technique on a number of Machine Translation (MT) datasets, demonstrating that it leads to significant gains over cross-entropy.
arXiv Detail & Related papers (2020-10-10T07:00:57Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP)
In this paper, we explore the landscape of introducing transfer learning techniques for NLP by a unified framework that converts all text-based language problems into a text-to-text format.
arXiv Detail & Related papers (2019-10-23T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.