Enhancing Customer Contact Efficiency with Graph Neural Networks in Credit Card Fraud Detection Workflow
- URL: http://arxiv.org/abs/2504.02275v1
- Date: Thu, 03 Apr 2025 04:50:45 GMT
- Title: Enhancing Customer Contact Efficiency with Graph Neural Networks in Credit Card Fraud Detection Workflow
- Authors: Menghao Huo, Kuan Lu, Qiang Zhu, Zhenrui Chen,
- Abstract summary: We propose a fraud detection framework incorporating Graph Convolutional Networks (RGCN) to enhance the accuracy of identifying fraudulent transactions.<n>Our experiments are conducted using the IBM credit card transaction dataset to evaluate the effectiveness of this approach.
- Score: 1.0853764732047277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Credit card fraud has been a persistent issue since the last century, causing significant financial losses to the industry. The most effective way to prevent fraud is by contacting customers to verify suspicious transactions. However, while these systems are designed to detect fraudulent activity, they often mistakenly flag legitimate transactions, leading to unnecessary declines that disrupt the user experience and erode customer trust. Frequent false positives can frustrate customers, resulting in dissatisfaction, increased complaints, and a diminished sense of security. To address these limitations, we propose a fraud detection framework incorporating Relational Graph Convolutional Networks (RGCN) to enhance the accuracy and efficiency of identifying fraudulent transactions. By leveraging the relational structure of transaction data, our model reduces the need for direct customer confirmation while maintaining high detection performance. Our experiments are conducted using the IBM credit card transaction dataset to evaluate the effectiveness of this approach.
Related papers
- Deep Learning Approaches for Anti-Money Laundering on Mobile Transactions: Review, Framework, and Directions [51.43521977132062]
Money laundering is a financial crime that obscures the origin of illicit funds.
The proliferation of mobile payment platforms and smart IoT devices has significantly complicated anti-money laundering investigations.
This paper conducts a comprehensive review of deep learning solutions and the challenges associated with their use in AML.
arXiv Detail & Related papers (2025-03-13T05:19:44Z) - Semi-supervised Credit Card Fraud Detection via Attribute-Driven Graph Representation [28.745101225936697]
We propose a semi-supervised graph neural network for fraud detection.<n>Specifically, we leverage transaction records to construct a temporal transaction graph.<n>We then pass messages among the nodes through a Gated Temporal Attention Network (GTAN) to learn the transaction representation.
arXiv Detail & Related papers (2024-12-24T08:48:48Z) - Credit Card Fraud Detection in the Nigerian Financial Sector: A Comparison of Unsupervised TensorFlow-Based Anomaly Detection Techniques, Autoencoders and PCA Algorithm [0.0]
Credit card fraud is a major cause of national concern in the Nigerian financial sector.
This paper aims to compare the effectiveness of two fraud detection technologies that are projected to work fully independent of human intervention.
arXiv Detail & Related papers (2024-03-08T21:22:05Z) - Enhancing Credit Card Fraud Detection A Neural Network and SMOTE Integrated Approach [4.341096233663623]
This research proposes an innovative methodology combining Neural Networks (NN) and Synthet ic Minority Over-sampling Technique (SMOTE) to enhance the detection performance.
The study addresses the inherent imbalance in credit card transaction data, focusing on technical advancements for robust and precise fraud detection.
arXiv Detail & Related papers (2024-02-27T02:26:04Z) - Transparency and Privacy: The Role of Explainable AI and Federated
Learning in Financial Fraud Detection [0.9831489366502302]
This research introduces a novel approach using Federated Learning (FL) and Explainable AI (XAI) to address these challenges.
FL enables financial institutions to collaboratively train a model to detect fraudulent transactions without directly sharing customer data.
XAI ensures that the predictions made by the model can be understood and interpreted by human experts, adding a layer of transparency and trust to the system.
arXiv Detail & Related papers (2023-12-20T18:26:59Z) - Incentivized Communication for Federated Bandits [67.4682056391551]
We introduce an incentivized communication problem for federated bandits, where the server shall motivate clients to share data by providing incentives.
We propose the first incentivized communication protocol, namely, Inc-FedUCB, that achieves near-optimal regret with provable communication and incentive cost guarantees.
arXiv Detail & Related papers (2023-09-21T00:59:20Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - FedGT: Identification of Malicious Clients in Federated Learning with Secure Aggregation [69.75513501757628]
FedGT is a novel framework for identifying malicious clients in federated learning with secure aggregation.
We show that FedGT significantly outperforms the private robust aggregation approach based on the geometric median recently proposed by Pillutla et al.
arXiv Detail & Related papers (2023-05-09T14:54:59Z) - A Combination of Deep Neural Networks and K-Nearest Neighbors for Credit
Card Fraud Detection [0.0]
The paper implements new techniques, which contains of under-sampling algorithms, K-nearest Neighbor Algorithm (KNN) and Deep Neural Network (KNN)
The performance evaluation showed that DNN model gives precise high accuracy (98.12%), which shows the good ability of presented method to detect fraudulent transactions.
arXiv Detail & Related papers (2022-05-27T10:33:27Z) - Feature-Level Fusion of Super-App and Telecommunication Alternative Data
Sources for Credit Card Fraud Detection [106.33204064461802]
We review the effectiveness of a feature-level fusion of super-app customer information, mobile phone line data, and traditional credit risk variables for the early detection of identity theft credit card fraud.
We evaluate our approach over approximately 90,000 users from a credit lender's digital platform database.
arXiv Detail & Related papers (2021-11-05T19:10:35Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
The Cold-start is a significant problem referring to the failure of a detection system to recognize the authenticity of a new user.
In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component.
HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews.
arXiv Detail & Related papers (2020-06-10T08:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.