論文の概要: Temporal Gaussian Copula For Clinical Multivariate Time Series Data Imputation
- arxiv url: http://arxiv.org/abs/2504.02317v1
- Date: Thu, 03 Apr 2025 06:44:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:57:48.766484
- Title: Temporal Gaussian Copula For Clinical Multivariate Time Series Data Imputation
- Title(参考訳): 臨床用多変量時系列データインプットのための経時的ガウス的コプラ
- Authors: Ye Su, Hezhe Qiao, Di Wu, Yuwen Chen, Lin Chen,
- Abstract要約: 時間的ガウスコプラモデル (TGC) を3次MTS計算のために提案する。
我々は、データ管理におけるロバスト性を改善するために、期待最大化(EM)アルゴリズムを用いる。
我々のTGCモデルでは,テストデータセットの欠落率に強いロバスト性を示す。
- 参考スコア(独自算出の注目度): 13.771292428542438
- License:
- Abstract: The imputation of the Multivariate time series (MTS) is particularly challenging since the MTS typically contains irregular patterns of missing values due to various factors such as instrument failures, interference from irrelevant data, and privacy regulations. Existing statistical methods and deep learning methods have shown promising results in time series imputation. In this paper, we propose a Temporal Gaussian Copula Model (TGC) for three-order MTS imputation. The key idea is to leverage the Gaussian Copula to explore the cross-variable and temporal relationships based on the latent Gaussian representation. Subsequently, we employ an Expectation-Maximization (EM) algorithm to improve robustness in managing data with varying missing rates. Comprehensive experiments were conducted on three real-world MTS datasets. The results demonstrate that our TGC substantially outperforms the state-of-the-art imputation methods. Additionally, the TGC model exhibits stronger robustness to the varying missing ratios in the test dataset. Our code is available at https://github.com/MVL-Lab/TGC-MTS.
- Abstract(参考訳): 多変量時系列(MTS)の計算は特に困難であり、MTSは通常、計器故障、無関係データからの干渉、プライバシー規則などの様々な要因により、欠落値の不規則なパターンを含む。
既存の統計手法と深層学習法は時系列計算において有望な結果を示している。
本稿では,3次MTS計算のための時空間ガウスコプラモデル(TGC)を提案する。
鍵となる考え方は、ガウスのコピュラを利用して、潜伏したガウスの表現に基づいて、クロス変数と時間的関係を探索することである。
次に,データ管理におけるロバスト性を改善するために,期待最大化(EM)アルゴリズムを用いる。
3つの実世界のMTSデータセットに対して総合的な実験を行った。
以上の結果から,我々のTGCは最先端の計算法よりも大幅に優れていたことが示唆された。
さらに、TGCモデルは、テストデータセットの様々な欠落率に対して強い堅牢性を示す。
私たちのコードはhttps://github.com/MVL-Lab/TGC-MTSで公開されています。
関連論文リスト
- MTSCI: A Conditional Diffusion Model for Multivariate Time Series Consistent Imputation [41.681869408967586]
主要な研究課題は、どのようにインパルスの整合性を確保するか、すなわち観測値とインパルス値の整合性を確保するかである。
従来の手法は、学習プロセスを導くために、計算対象の帰納的バイアスにのみ依存する。
論文 参考訳(メタデータ) (2024-08-11T10:24:53Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Scalable Numerical Embeddings for Multivariate Time Series: Enhancing Healthcare Data Representation Learning [6.635084843592727]
独立トークンとして各特徴値を扱う新しいフレームワークであるSCANEを提案する。
SCANEは、異なる機能埋め込みの特性を正規化し、スケーラブルな埋め込みメカニズムを通じて表現学習を強化する。
本研究は,MTSの精度の高い予測出力を実現するために,nUMerical eMbeddIng Transformer (SUMMIT) を開発した。
論文 参考訳(メタデータ) (2024-05-26T13:06:45Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Effective Abnormal Activity Detection on Multivariate Time Series
Healthcare Data [8.84352369893021]
本稿では,効率的な表現学習と異常行動検出のための残差に基づく異常検出手法Rs-ADを提案する。
本手法を実世界の歩行データセット上で評価し,実験結果からF1スコアが0.839であることを示す。
論文 参考訳(メタデータ) (2023-09-11T22:08:09Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
完全時空間グラフニューラルネットワーク(FC-STGNN)という新しい手法を提案する。
グラフ構築のために、時間的距離に基づいて、すべてのタイムスタンプにセンサーを接続する減衰グラフを設計する。
グラフ畳み込みのために,移動プールGNN層を用いたFCグラフ畳み込みを考案し,ST依存性を効果的に把握し,効率的な表現を学習する。
論文 参考訳(メタデータ) (2023-09-11T08:44:07Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - Contrastive predictive coding for Anomaly Detection in Multi-variate
Time Series Data [6.463941665276371]
本稿では,MVTSデータにおける異常検出に向けて,TRL-CPC(Contrastive Predictive Coding)を用いた時系列表現学習を提案する。
まず,エンコーダ,自動回帰器,非線形変換関数を共同で最適化し,MVTSデータセットの表現を効果的に学習する。
論文 参考訳(メタデータ) (2022-02-08T04:25:29Z) - Self-supervised Transformer for Multivariate Clinical Time-Series with
Missing Values [7.9405251142099464]
本稿ではSTraTS(Self-supervised Transformer for TimeSeries)モデルを提案する。
伝統的な密度行列表現を使う代わりに、時系列を観測三重項の集合として扱う。
これは、特にラベル付きデータが制限された場合、死亡予測の最先端手法よりも優れた予測性能を示す。
論文 参考訳(メタデータ) (2021-07-29T19:39:39Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。