MonoGS++: Fast and Accurate Monocular RGB Gaussian SLAM
- URL: http://arxiv.org/abs/2504.02437v1
- Date: Thu, 03 Apr 2025 09:51:51 GMT
- Title: MonoGS++: Fast and Accurate Monocular RGB Gaussian SLAM
- Authors: Renwu Li, Wenjing Ke, Dong Li, Lu Tian, Emad Barsoum,
- Abstract summary: We present MonoGS++, a novel fast and accurate Simultaneous localization and Mapping (SLAM) method.<n>Our approach reduces the hardware dependency and only requires RGB input, leveraging online visual odometry (VO) to generate sparse point clouds in real-time.<n>Our method realized a significant 5.57x improvement in frames per second (fps) over the previous state-of-the-art, MonoGS.
- Score: 9.37281948308712
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present MonoGS++, a novel fast and accurate Simultaneous Localization and Mapping (SLAM) method that leverages 3D Gaussian representations and operates solely on RGB inputs. While previous 3D Gaussian Splatting (GS)-based methods largely depended on depth sensors, our approach reduces the hardware dependency and only requires RGB input, leveraging online visual odometry (VO) to generate sparse point clouds in real-time. To reduce redundancy and enhance the quality of 3D scene reconstruction, we implemented a series of methodological enhancements in 3D Gaussian mapping. Firstly, we introduced dynamic 3D Gaussian insertion to avoid adding redundant Gaussians in previously well-reconstructed areas. Secondly, we introduced clarity-enhancing Gaussian densification module and planar regularization to handle texture-less areas and flat surfaces better. We achieved precise camera tracking results both on the synthetic Replica and real-world TUM-RGBD datasets, comparable to those of the state-of-the-art. Additionally, our method realized a significant 5.57x improvement in frames per second (fps) over the previous state-of-the-art, MonoGS.
Related papers
- Pseudo Depth Meets Gaussian: A Feed-forward RGB SLAM Baseline [64.42938561167402]
We propose an online 3D reconstruction method using 3D Gaussian-based SLAM, combined with a feed-forward recurrent prediction module.<n>This approach replaces slow test-time optimization with fast network inference, significantly improving tracking speed.<n>Our method achieves performance on par with the state-of-the-art SplaTAM, while reducing tracking time by more than 90%.
arXiv Detail & Related papers (2025-08-06T16:16:58Z) - HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction [38.47566815670662]
HI-SLAM2 is a geometry-aware Gaussian SLAM system that achieves fast and accurate monocular scene reconstruction using only RGB input.
We demonstrate significant improvements over existing Neural SLAM methods and even surpass RGB-D-based methods in both reconstruction and rendering quality.
arXiv Detail & Related papers (2024-11-27T01:39:21Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.
3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splatting has emerged as a powerful representation of geometry and appearance for RGB-only dense Simultaneous SLAM.
We propose the first RGB-only SLAM system with a dense 3D Gaussian map representation.
Our experiments on the Replica, TUM-RGBD, and ScanNet datasets indicate the effectiveness of globally optimized 3D Gaussians.
arXiv Detail & Related papers (2024-05-26T12:26:54Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - Gaussian Splatting SLAM [16.3858380078553]
We present the first application of 3D Gaussian Splatting in monocular SLAM.
Our method runs live at 3fps, unifying the required representation for accurate tracking, mapping, and high-quality rendering.
Several innovations are required to continuously reconstruct 3D scenes with high fidelity from a live camera.
arXiv Detail & Related papers (2023-12-11T18:19:04Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.