Finite steady-state current defies non-Hermitian many-body localization
- URL: http://arxiv.org/abs/2504.02460v1
- Date: Thu, 03 Apr 2025 10:24:39 GMT
- Title: Finite steady-state current defies non-Hermitian many-body localization
- Authors: Pietro Brighi, Marko Ljubotina, Federico Roccati, Federico Balducci,
- Abstract summary: Non-Hermitian many-body localization (NH MBL) has emerged as a possible scenario for stable localization in open systems.<n>In this work, we investigate transport properties in a disordered, non-Hermitian XXZ spin chain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-Hermitian many-body localization (NH MBL) has emerged as a possible scenario for stable localization in open systems, as suggested by spectral indicators identifying a putative transition for finite system sizes. In this work, we shift the focus to dynamical probes, specifically the steady-state spin current, to investigate transport properties in a disordered, non-Hermitian XXZ spin chain. Through exact diagonalization for small systems and tensor-network methods for larger chains, we demonstrate that the steady-state current remains finite and decays exponentially with disorder strength, showing no evidence of a transition up to disorder values far beyond the previously claimed critical point. Our results reveal a stark discrepancy between spectral indicators, which suggest localization, and transport behavior, which indicates delocalization. This highlights the importance of dynamical observables in characterizing NH MBL and suggests that traditional spectral measures may not fully capture the physics of non-Hermitian systems. Additionally, we observe a non-commutativity of limits in system size and time, further complicating the interpretation of finite-size studies. These findings challenge the existence of NH MBL in the studied model and underscore the need for alternative approaches to understand localization in non-Hermitian settings.
Related papers
- The Coherent Forward Scattering peak: a probe of non-ergodicity and symmetries in a quantum chaotic system [0.0]
Coherent Forward Scattering (CFS) peak emerges in the presence of strong localization.<n>CFS is a robust quantitative marker of non-ergodicity.<n>This work opens new avenues for characterizing non-ergodicity and symmetries in quantum chaotic or disordered systems.
arXiv Detail & Related papers (2025-03-03T18:01:38Z) - Deep Variational Sequential Monte Carlo for High-Dimensional Observations [39.455729393887786]
This work introduces a differentiable particle filter that leverages the unsupervised variational SMC objective to parameterize the proposal and transition distributions with a neural network.<n> Experimental results demonstrate that our approach outperforms established baselines in tracking the challenging Lorenz attractor from high-dimensional and partial observations.
arXiv Detail & Related papers (2025-01-10T14:10:19Z) - Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems [49.1574468325115]
The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
arXiv Detail & Related papers (2024-07-16T13:42:38Z) - Phenomenology of many-body localization in bond-disordered spin chains [0.0]
Many-body localization hinders the thermalization of quantum many-body systems in the presence of strong disorder.<n>In this work, we study the MBL regime in bond-disordered spin-1/2 XXZ spin chain.
arXiv Detail & Related papers (2024-05-16T12:52:47Z) - Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Fixed lines in a non-Hermitian Kitaev chain with spatially balanced
pairing processes [0.0]
Exact solutions for non-Hermitian quantum many-body systems are rare but may provide valuable insights into the interplay between Hermitian and non-Hermitian components.
We report our investigation of a non-Hermitian variant of a p-wave Kitaev chain by introducing staggered imbalanced pair creation and quench terms.
arXiv Detail & Related papers (2023-04-30T14:41:42Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Beyond the Edge of Stability via Two-step Gradient Updates [49.03389279816152]
Gradient Descent (GD) is a powerful workhorse of modern machine learning.
GD's ability to find local minimisers is only guaranteed for losses with Lipschitz gradients.
This work focuses on simple, yet representative, learning problems via analysis of two-step gradient updates.
arXiv Detail & Related papers (2022-06-08T21:32:50Z) - Monitored Open Fermion Dynamics: Exploring the Interplay of Measurement,
Decoherence, and Free Hamiltonian Evolution [0.0]
We investigate the impact of dephasing and the inevitable evolution into a non-Gaussian, mixed state, on the dynamics of monitored fermions.
For weak dephasing, constant monitoring preserves a weakly mixed state, which displays a robust measurement-induced phase transition.
We interpret this as a signature of gapless, classical diffusion, which is stabilized by the balanced interplay of Hamiltonian dynamics, measurements, and decoherence.
arXiv Detail & Related papers (2022-02-28T19:00:13Z) - Many-body localization and delocalization dynamics in the thermodynamic
limit [0.0]
Numerical linked cluster expansions (NLCE) provide a means to tackle quantum systems directly in the thermodynamic limit.
We demonstrate that NLCE provide a powerful tool to explore MBL by simulating quench dynamics in disordered spin-$1/2$ two-leg ladders and Fermi-Hubbard chains.
Our work sheds light on MBL in systems beyond the well-studied disordered Heisenberg chain and emphasizes the usefulness of NLCE for this purpose.
arXiv Detail & Related papers (2022-02-21T19:15:46Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.