論文の概要: Graph Attention-Driven Bayesian Deep Unrolling for Dual-Peak Single-Photon Lidar Imaging
- arxiv url: http://arxiv.org/abs/2504.02480v1
- Date: Thu, 03 Apr 2025 10:57:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:58:22.988297
- Title: Graph Attention-Driven Bayesian Deep Unrolling for Dual-Peak Single-Photon Lidar Imaging
- Title(参考訳): Dual-Peak Single-Photon Lidar Imaging におけるグラフアテンション駆動型ベイジアンディープアンローリング
- Authors: Kyungmin Choi, JaKeoung Koo, Stephen McLaughlin, Abderrahim Halimi,
- Abstract要約: 単光子ライダーイメージングは高解像度と長距離の能力のために3Dイメージングにおいて大きな利点がある。
1ピクセル当たりの複数のターゲットを持つノイズの多い環境では、適用が難しい。
デュアルピーク単光子ライダーイメージングのためのディープアンローリングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 3.3052347440119836
- License:
- Abstract: Single-photon Lidar imaging offers a significant advantage in 3D imaging due to its high resolution and long-range capabilities, however it is challenging to apply in noisy environments with multiple targets per pixel. To tackle these challenges, several methods have been proposed. Statistical methods demonstrate interpretability on the inferred parameters, but they are often limited in their ability to handle complex scenes. Deep learning-based methods have shown superior performance in terms of accuracy and robustness, but they lack interpretability or they are limited to a single-peak per pixel. In this paper, we propose a deep unrolling algorithm for dual-peak single-photon Lidar imaging. We introduce a hierarchical Bayesian model for multiple targets and propose a neural network that unrolls the underlying statistical method. To support multiple targets, we adopt a dual depth maps representation and exploit geometric deep learning to extract features from the point cloud. The proposed method takes advantages of statistical methods and learning-based methods in terms of accuracy and quantifying uncertainty. The experimental results on synthetic and real data demonstrate the competitive performance when compared to existing methods, while also providing uncertainty information.
- Abstract(参考訳): 単一光子ライダーイメージングは高分解能と長距離能力のために3Dイメージングにおいて大きな利点があるが、1ピクセル当たりの複数のターゲットを持つノイズの多い環境では適用が困難である。
これらの課題に対処するために、いくつかの方法が提案されている。
統計的手法は、推論されたパラメータの解釈可能性を示すが、複雑なシーンを扱う能力に制限されることが多い。
深層学習に基づく手法は精度とロバスト性において優れた性能を示してきたが、解釈性に欠ける。
本稿では,デュアルピーク単光子ライダーイメージングのためのディープアンローリングアルゴリズムを提案する。
本稿では,複数のターゲットに対して階層的ベイズモデルを導入し,基礎となる統計的手法を解き放つニューラルネットワークを提案する。
複数のターゲットをサポートするために、二元深度マップ表現を採用し、幾何学的深度学習を利用して点雲から特徴を抽出する。
提案手法は,精度と不確実性の定量化の観点から,統計的手法と学習に基づく手法の利点を生かしている。
合成および実データを用いた実験結果から,既存手法と比較して競争性能が向上し,不確実性も示された。
関連論文リスト
- Revisiting Disparity from Dual-Pixel Images: Physics-Informed Lightweight Depth Estimation [3.6337378417255177]
完成度に基づくネットワークに基づく軽量な分散度推定手法を提案する。
DP固有の相違誤差をパラメトリックにモデル化し、トレーニング中のサンプリングに使用することにより、DPのユニークな特性を取得する。
その結果,提案手法はシステム全体の規模を従来の手法の1/5に減らし,最先端の成果を得た。
論文 参考訳(メタデータ) (2024-11-06T09:03:53Z) - bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
疎二分量時間画像データから高画質の画像スタックを元の解像度で再構成する新しい方法であるbit2bitを提案する。
Poisson denoisingの最近の研究に触発されて、スパースバイナリ光子データから高密度な画像列を生成するアルゴリズムを開発した。
本研究では,様々な課題の画像条件下でのSPADの高速映像を多種多種に含む新しいデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-30T17:30:35Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
本研究は、深層学習とマルチセットニューロンのアプローチの比較実験を開発する。
ディープラーニングアプローチは、画像セグメンテーションの実行の可能性を確認した。
代替のマルチセット手法では、計算資源をほとんど必要とせずに精度を向上することができた。
論文 参考訳(メタデータ) (2023-07-19T16:42:52Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
本稿では,画素ごとの深度を連続的にモデル化する手法を提案する。
提案手法の精度(MG)は,KITTI深度予測ベンチマークリーダーボードの上位に位置する。
論文 参考訳(メタデータ) (2023-03-31T16:01:03Z) - CbwLoss: Constrained Bidirectional Weighted Loss for Self-supervised
Learning of Depth and Pose [13.581694284209885]
光度差は、未ラベルのモノクロビデオから深度とカメラのポーズを推定するためにニューラルネットワークを訓練するために使用される。
本稿では,アフィン変換とビュー合成によって生じる流れ場と深さ構造の違いを利用して,移動物体とオクルージョンを取り扱う。
ネットワークを追加することなく、より意味的な情報と文脈的な情報を持つ特徴の差を測定することにより、テクスチャレス領域がモデル最適化に与える影響を緩和する。
論文 参考訳(メタデータ) (2022-12-12T12:18:24Z) - Multi-View Photometric Stereo Revisited [100.97116470055273]
多視点測光ステレオ(MVPS)は、画像から被写体を詳細に正確に3D取得する方法として好まれる。
MVPSは異方性や光沢などの他の対象物質と同様に,等方性に対しても有効である。
提案手法は、複数のベンチマークデータセットで広範囲にテストした場合に、最先端の結果を示す。
論文 参考訳(メタデータ) (2022-10-14T09:46:15Z) - Bubble identification from images with machine learning methods [3.4123736336071864]
気泡流画像の自動的かつ信頼性の高い処理が必要である。
近年のアプローチでは,この課題に対するディープラーニングアルゴリズムの利用に焦点が当てられている。
本研究では、畳み込みニューラルネットワーク(CNN)に基づく3つの異なる手法を試すことにより、これらの点に挑戦する。
論文 参考訳(メタデータ) (2022-02-07T12:38:17Z) - A Bayesian Based Deep Unrolling Algorithm for Single-Photon Lidar
Systems [4.386694688246789]
現実の応用における3次元単光子ライダーイメージングは、高騒音環境におけるイメージングを含む複数の課題に直面している。
統計や学習に基づくフレームワークに基づいて,これらの問題に対処するアルゴリズムが提案されている。
本稿では,統計的ベイズアルゴリズムを単一光子ライダーデータから頑健な画像再構成のための新しいディープラーニングアーキテクチャに展開する。
論文 参考訳(メタデータ) (2022-01-26T12:58:05Z) - Deep Bingham Networks: Dealing with Uncertainty and Ambiguity in Pose
Estimation [74.76155168705975]
Deep Bingham Networks (DBN)は、3Dデータに関するほぼすべての実生活アプリケーションで発生するポーズ関連の不確実性と曖昧性を扱うことができる。
DBNは、(i)異なる分布モードを生成できる多仮説予測ヘッドにより、アートダイレクトポーズ回帰ネットワークの状態を拡張する。
トレーニング中のモードや後方崩壊を回避し,数値安定性を向上させるための新しいトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-12-20T19:20:26Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
本稿では,LDR画像形成パイプラインの領域知識をモデルに組み込むことを提案する。
我々は,HDRto-LDR画像形成パイプラインを(1)ダイナミックレンジクリッピング,(2)カメラ応答関数からの非線形マッピング,(3)量子化としてモデル化する。
提案手法は,最先端の単一画像HDR再構成アルゴリズムに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-04-02T17:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。