Online Distributional Regression
- URL: http://arxiv.org/abs/2407.08750v2
- Date: Wed, 21 Aug 2024 11:43:00 GMT
- Title: Online Distributional Regression
- Authors: Simon Hirsch, Jonathan Berrisch, Florian Ziel,
- Abstract summary: Large-scale streaming data are common in modern machine learning applications.
Many fields, such as supply chain management, weather and meteorology, have pivoted towards using probabilistic forecasts.
We present a methodology for online estimation of regularized, linear distributional models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale streaming data are common in modern machine learning applications and have led to the development of online learning algorithms. Many fields, such as supply chain management, weather and meteorology, energy markets, and finance, have pivoted towards using probabilistic forecasts, which yields the need not only for accurate learning of the expected value but also for learning the conditional heteroskedasticity and conditional distribution moments. Against this backdrop, we present a methodology for online estimation of regularized, linear distributional models. The proposed algorithm is based on a combination of recent developments for the online estimation of LASSO models and the well-known GAMLSS framework. We provide a case study on day-ahead electricity price forecasting, in which we show the competitive performance of the incremental estimation combined with strongly reduced computational effort. Our algorithms are implemented in a computationally efficient Python package.
Related papers
- Online Estimation via Offline Estimation: An Information-Theoretic Framework [75.80823630681323]
Motivated by connections between estimation and interactive decision making, we ask: is it possible to convert offline estimation algorithms into online estimation algorithms?
We introduce a new framework, Oracle-Efficient Online Estimation (OEOE), where the learner can only interact with the data stream indirectly through a sequence of offline estimators produced by a black-box algorithm operating on the stream.
arXiv Detail & Related papers (2024-04-15T20:19:18Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - An Adaptive Approach for Probabilistic Wind Power Forecasting Based on
Meta-Learning [7.422947032954223]
This paper studies an adaptive approach for probabilistic wind power forecasting (WPF) including offline and online learning procedures.
In the offline learning stage, a base forecast model is trained via inner and outer loop updates of meta-learning.
In the online learning stage, the base forecast model is applied to online forecasting combined with incremental learning techniques.
arXiv Detail & Related papers (2023-08-15T18:28:22Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
We propose a Machine Learning-based model that leverages novel key predictors for estimating pathloss.
By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others.
arXiv Detail & Related papers (2022-01-30T19:50:16Z) - Learning to Forecast Dynamical Systems from Streaming Data [3.6136161812301744]
This paper proposes a streaming algorithm for KAF that only requires a single pass over the training data.
Computational experiments demonstrate that the streaming KAF method can successfully forecast several classes of dynamical systems.
The overall methodology may have wider interest as a new template for streaming kernel regression.
arXiv Detail & Related papers (2021-09-20T17:19:57Z) - Deep learning-based multi-output quantile forecasting of PV generation [34.51430520593065]
This paper develops probabilistic PV forecasters by taking advantage of recent breakthroughs in deep learning.
It tailored forecasting tool, named encoder-decoder, is implemented to compute intraday multi-output PV quantiles forecasts.
The models are trained using quantile regression, a non-parametric approach.
arXiv Detail & Related papers (2021-06-02T16:28:10Z) - Online Learning with Radial Basis Function Networks [0.0]
We consider the sequential and continual learning sub-genres of online learning.
We find that the online learning techniques outperform the offline learning ones.
arXiv Detail & Related papers (2021-03-15T14:39:40Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.