論文の概要: SelfMedHPM: Self Pre-training With Hard Patches Mining Masked Autoencoders For Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2504.02524v1
- Date: Thu, 03 Apr 2025 12:28:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:56:23.101196
- Title: SelfMedHPM: Self Pre-training With Hard Patches Mining Masked Autoencoders For Medical Image Segmentation
- Title(参考訳): SelfMedHPM:医療画像セグメンテーションのためのハードパッチマイニング自動エンコーダ
- Authors: Yunhao Lv, Lingyu Chen, Jian Wang, Yangxi Li, Fang Chen,
- Abstract要約: 我々は、CT多臓器分割タスク(selfMedHPM)のためのマスク付きオートエンコーダをハードパッチマイニングするMIM自己学習フレームワークを提案する。
目標データのトレーニングセットに基づいてViT自己調整を行い、まずパッチ損失を予測し、次のマスクの位置を決定する補助損失予測器を導入する。
- 参考スコア(独自算出の注目度): 7.432548455596711
- License:
- Abstract: In recent years, deep learning methods such as convolutional neural network (CNN) and transformers have made significant progress in CT multi-organ segmentation. However, CT multi-organ segmentation methods based on masked image modeling (MIM) are very limited. There are already methods using MAE for CT multi-organ segmentation task, we believe that the existing methods do not identify the most difficult areas to reconstruct. To this end, we propose a MIM self-training framework with hard patches mining masked autoencoders for CT multi-organ segmentation tasks (selfMedHPM). The method performs ViT self-pretraining on the training set of the target data and introduces an auxiliary loss predictor, which first predicts the patch loss and determines the location of the next mask. SelfMedHPM implementation is better than various competitive methods in abdominal CT multi-organ segmentation and body CT multi-organ segmentation. We have validated the performance of our method on the Multi Atlas Labeling Beyond The Cranial Vault (BTCV) dataset for abdomen mult-organ segmentation and the SinoMed Whole Body (SMWB) dataset for body multi-organ segmentation tasks.
- Abstract(参考訳): 近年,畳み込みニューラルネットワーク(CNN)やトランスフォーマーなどの深層学習手法は,CT多臓器セグメンテーションにおいて大きな進歩を遂げている。
しかし,マスク画像モデリング(MIM)に基づくCT多臓器分割法は非常に限られている。
複数臓器分割作業にMAEを用いた手法はすでに存在するが,既存の手法では再構成が困難な領域を特定できないと考えられる。
そこで本研究では,CT多臓器分割タスク(selfMedHPM)のためのマスク付きオートエンコーダをハードパッチでマイニングするMIM自己学習フレームワークを提案する。
目標データのトレーニングセットに基づいてViT自己調整を行い、まずパッチ損失を予測し、次のマスクの位置を決定する補助損失予測器を導入する。
SelfMedHPM の実装は腹部CT多臓器分画と体CT多臓器分画の様々な競合手法よりも優れている。
我々は,マルチアトラスラベリング(Multi Atlas Labeling Beyond The Cranial Vault, BTCV)の腹部乳頭分節用データセット, およびSMWB(SinoMed Whole Body, SMWB)の多臓器分節用データセットの性能を検証した。
関連論文リスト
- AnatoMix: Anatomy-aware Data Augmentation for Multi-organ Segmentation [6.471203541258319]
本稿では,多臓器セグメンテーションデータセットの一般化性を高めるための新しいデータ拡張戦略を提案する。
オブジェクトレベルのマッチングと操作により,本手法は解剖学的に正しい画像を生成することができる。
拡張法は, ベースライン法74.8と比較して76.1ディスとなる。
論文 参考訳(メタデータ) (2024-03-05T21:07:50Z) - M3BUNet: Mobile Mean Max UNet for Pancreas Segmentation on CT-Scans [25.636974007788986]
我々は,M3BUNetを提案する。M3BUNetはMobileNetとU-Netニューラルネットワークの融合で,2段階に分けて膵CT像を段階的に分割する,新しい平均値(MM)アテンションを備える。
細かなセグメンテーションの段階では、ウェーブレット分解フィルタを用いてマルチインプット画像を作成することにより、膵のセグメンテーション性能が向上することがわかった。
提案手法は,最大89.53%のDice similarity Coefficient(DSC)値と最大81.16のIntersection Over Union(IOU)スコアをNIH pancreasデータセットで達成する。
論文 参考訳(メタデータ) (2024-01-18T23:10:08Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
自動生成臓器マスクを利用する新しい解剖ガイドセグメンテーションフレームワークを開発した。
提案手法を2つのCRCセグメンテーションデータセット上で広範囲に評価する。
論文 参考訳(メタデータ) (2023-10-07T03:22:06Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
本稿では,トランスフォーマーに基づく動的オンデマンドネットワーク(TransDoDNet)を提案する。
動的ヘッドにより、ネットワークは複数のセグメンテーションタスクを柔軟に達成することができる。
我々はMOTSと呼ばれる大規模にラベル付けされたMulti-Organ and tumorベンチマークを作成し、他の競合相手よりもTransDoDNetの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-13T13:03:09Z) - Self-supervised 3D anatomy segmentation using self-distilled masked
image transformer (SMIT) [2.7298989068857487]
自己教師型学習は、畳み込みネットワークを用いた医用画像のセグメンテーションに成功している。
我々は、我々のアプローチがより正確で、他のプリテキストタスクよりも微調整データセットを少なくする必要があることを示した。
論文 参考訳(メタデータ) (2022-05-20T17:55:14Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Abdominal multi-organ segmentation with cascaded convolutional and
adversarial deep networks [0.36944296923226316]
深層学習を用いた腹部CTおよびMR画像からの完全自動多臓器分画について検討した。
我々のパイプラインは、最先端のエンコーダデコーダスキームよりも優れた結果をもたらす。
論文 参考訳(メタデータ) (2020-01-26T21:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。