Delineate Anything: Resolution-Agnostic Field Boundary Delineation on Satellite Imagery
- URL: http://arxiv.org/abs/2504.02534v1
- Date: Thu, 03 Apr 2025 12:37:04 GMT
- Title: Delineate Anything: Resolution-Agnostic Field Boundary Delineation on Satellite Imagery
- Authors: Mykola Lavreniuk, Nataliia Kussul, Andrii Shelestov, Bohdan Yailymov, Yevhenii Salii, Volodymyr Kuzin, Zoltan Szantoi,
- Abstract summary: We introduce the Field Boundary Instance - 22M dataset (FBIS-22M), a large-scale, multi-resolution instance dataset.<n>We propose Delineate Anything, an instance segmentation model trained on the FBIS-22M dataset.<n>Our proposed model sets a new state-of-the-art, achieving a substantial improvement of 88.5% in mAP@0.5 and 103% in mAP@0.5:0.95 over existing methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The accurate delineation of agricultural field boundaries from satellite imagery is vital for land management and crop monitoring. However, current methods face challenges due to limited dataset sizes, resolution discrepancies, and diverse environmental conditions. We address this by reformulating the task as instance segmentation and introducing the Field Boundary Instance Segmentation - 22M dataset (FBIS-22M), a large-scale, multi-resolution dataset comprising 672,909 high-resolution satellite image patches (ranging from 0.25 m to 10 m) and 22,926,427 instance masks of individual fields, significantly narrowing the gap between agricultural datasets and those in other computer vision domains. We further propose Delineate Anything, an instance segmentation model trained on our new FBIS-22M dataset. Our proposed model sets a new state-of-the-art, achieving a substantial improvement of 88.5% in mAP@0.5 and 103% in mAP@0.5:0.95 over existing methods, while also demonstrating significantly faster inference and strong zero-shot generalization across diverse image resolutions and unseen geographic regions. Code, pre-trained models, and the FBIS-22M dataset are available at https://lavreniuk.github.io/Delineate-Anything.
Related papers
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
This paper presents a dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks.<n>The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic.<n>Accompanying the dataset is EarthMAE, a tailored Masked Autoencoder developed to tackle the distinct challenges of remote sensing data.
arXiv Detail & Related papers (2025-01-14T13:42:22Z) - Fields of The World: A Machine Learning Benchmark Dataset For Global Agricultural Field Boundary Segmentation [12.039406240082515]
Fields of The World (FTW) is a novel benchmark dataset for agricultural field instance segmentation.
FTW is an order of magnitude larger than previous datasets with 70,462 samples.
We show that models trained on FTW have better zero-shot and fine-tuning performance in held-out countries.
arXiv Detail & Related papers (2024-09-24T17:20:58Z) - Plant detection from ultra high resolution remote sensing images: A Semantic Segmentation approach based on fuzzy loss [2.6489824612123716]
We tackle the challenge of identifying plant species from ultra high resolution (UHR) remote sensing images.
Our approach involves introducing an RGB remote sensing dataset, characterized by millimeter-level spatial resolution.
First experimental results obtained on both our UHR dataset and a public dataset are presented, showing the relevance of the proposed methodology.
arXiv Detail & Related papers (2024-08-31T17:40:17Z) - Multi-Region Transfer Learning for Segmentation of Crop Field Boundaries in Satellite Images with Limited Labels [6.79949280366368]
We present an approach for segmentation of crop field boundaries in satellite images in regions lacking labeled data.
We show that our approach outperforms existing methods and that multi-region transfer learning substantially boosts performance for multiple model architectures.
arXiv Detail & Related papers (2024-03-29T22:24:12Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Progressive Domain Adaptation with Contrastive Learning for Object
Detection in the Satellite Imagery [0.0]
State-of-the-art object detection methods largely fail to identify small and dense objects.
We propose a small object detection pipeline that improves the feature extraction process.
We show we can alleviate the degradation of object identification in previously unseen datasets.
arXiv Detail & Related papers (2022-09-06T15:16:35Z) - Global Context Vision Transformers [78.5346173956383]
We propose global context vision transformer (GC ViT), a novel architecture that enhances parameter and compute utilization for computer vision.
We address the lack of the inductive bias in ViTs, and propose to leverage a modified fused inverted residual blocks in our architecture.
Our proposed GC ViT achieves state-of-the-art results across image classification, object detection and semantic segmentation tasks.
arXiv Detail & Related papers (2022-06-20T18:42:44Z) - Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images [0.0]
We propose a Scale-invariant neural network (Sci-Net) that is able to segment buildings present in aerial images at different spatial resolutions.
Specifically, we modified the U-Net architecture and fused it with dense Atrous Spatial Pyramid Pooling (ASPP) to extract fine-grained multi-scale representations.
arXiv Detail & Related papers (2021-11-12T16:45:20Z) - Contemplating real-world object classification [53.10151901863263]
We reanalyze the ObjectNet dataset recently proposed by Barbu et al. containing objects in daily life situations.
We find that applying deep models to the isolated objects, rather than the entire scene as is done in the original paper, results in around 20-30% performance improvement.
arXiv Detail & Related papers (2021-03-08T23:29:59Z) - TJU-DHD: A Diverse High-Resolution Dataset for Object Detection [48.94731638729273]
Large-scale, rich-diversity, and high-resolution datasets play an important role in developing better object detection methods.
We build a diverse high-resolution dataset (called TJU-DHD)
The dataset contains 115,354 high-resolution images and 709,330 labeled objects with a large variance in scale and appearance.
arXiv Detail & Related papers (2020-11-18T09:32:24Z) - Weakly Supervised Domain Adaptation for Built-up Region Segmentation in
Aerial and Satellite Imagery [3.8508264614798517]
Built-up area estimation is an important component in understanding the human impact on the environment, the effect of public policy, and general urban population analysis.
The diverse nature of aerial and satellite imagery and lack of labeled data covering this diversity makes machine learning algorithms difficult to generalize.
This paper proposes a novel domain adaptation algorithm to handle the challenges posed by the satellite and aerial imagery.
arXiv Detail & Related papers (2020-07-05T10:05:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.