Reservoir Computing: A New Paradigm for Neural Networks
- URL: http://arxiv.org/abs/2504.02639v1
- Date: Thu, 03 Apr 2025 14:34:51 GMT
- Title: Reservoir Computing: A New Paradigm for Neural Networks
- Authors: Felix Grezes,
- Abstract summary: In the early 1940s the first artificial neuron models were created as purely mathematical concepts.<n>Recurrent Neural Networks (RNNs) exacerbates the difficulties of traditional neural nets.<n>Reservoir Computing emerges as a solution to these problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A Literature Review of Reservoir Computing. Even before Artificial Intelligence was its own field of computational science, humanity has tried to mimic the activity of the human brain. In the early 1940s the first artificial neuron models were created as purely mathematical concepts. Over the years, ideas from neuroscience and computer science were used to develop the modern Neural Network. The interest in these models rose quickly but fell when they failed to be successfully applied to practical applications, and rose again in the late 2000s with the drastic increase in computing power, notably in the field of natural language processing, for example with the state-of-the-art speech recognizer making heavy use of deep neural networks. Recurrent Neural Networks (RNNs), a class of neural networks with cycles in the network, exacerbates the difficulties of traditional neural nets. Slow convergence limiting the use to small networks, and difficulty to train through gradient-descent methods because of the recurrent dynamics have hindered research on RNNs, yet their biological plausibility and their capability to model dynamical systems over simple functions makes then interesting for computational researchers. Reservoir Computing emerges as a solution to these problems that RNNs traditionally face. Promising to be both theoretically sound and computationally fast, Reservoir Computing has already been applied successfully to numerous fields: natural language processing, computational biology and neuroscience, robotics, even physics. This survey will explore the history and appeal of both traditional feed-forward and recurrent neural networks, before describing the theory and models of this new reservoir computing paradigm. Finally recent papers using reservoir computing in a variety of scientific fields will be reviewed.
Related papers
- Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Computational and Storage Efficient Quadratic Neurons for Deep Neural
Networks [10.379191500493503]
Experimental results have demonstrated that the proposed quadratic neuron structure exhibits superior computational and storage efficiency across various tasks.
This work introduces an efficient quadratic neuron architecture distinguished by its enhanced utilization of second-order computational information.
arXiv Detail & Related papers (2023-06-10T11:25:31Z) - Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
Scientific Computing [0.0]
Recent breakthroughs in computing power have made it feasible to use machine learning and deep learning to advance scientific computing.
Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data is sparse.
Neural networks offer a strong foundation to digest physical-driven or knowledge-based constraints.
arXiv Detail & Related papers (2022-11-14T15:44:07Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
Recent progress in AI has resulted from the use of limited forms of neurocompositional computing.
New, deeper forms of neurocompositional computing create AI systems that are more robust, accurate, and comprehensible.
arXiv Detail & Related papers (2022-05-02T18:00:10Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Neural Networks, Artificial Intelligence and the Computational Brain [0.0]
This study explores the concept of ANNs as a simulator of the biological neuron.
It also explores why brain-like intelligence is needed and how it differs from computational framework.
arXiv Detail & Related papers (2020-12-25T05:56:41Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
Spiking Neural Network algorithms hold the promise to implement advanced artificial intelligence using a fraction of the computations and power requirements.
This paper explains the theoretical workings of neuromorphic technologies based on spikes, and overviews the state-of-art in hardware processors, software platforms and neuromorphic sensing devices.
A progression path is paved for current machine learning specialists to update their skillset, as well as classification or predictive models from the current generation of deep neural networks to SNNs.
arXiv Detail & Related papers (2020-07-10T20:54:42Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.