Learning Phase Distortion with Selective State Space Models for Video Turbulence Mitigation
- URL: http://arxiv.org/abs/2504.02697v1
- Date: Thu, 03 Apr 2025 15:33:18 GMT
- Title: Learning Phase Distortion with Selective State Space Models for Video Turbulence Mitigation
- Authors: Xingguang Zhang, Nicholas Chimitt, Xijun Wang, Yu Yuan, Stanley H. Chan,
- Abstract summary: Atmospheric turbulence is a major source of image degradation in long-range imaging systems.<n>Many deep learning-based turbulence mitigation (TM) methods have been proposed, but they are slow, memory-hungry, and do not generalize well.<n>We present a new TM method based on two concepts: (1) A turbulence mitigation network based on the Selective State Space Model (MambaTM) and (2) Learned Latent Phase Distortion (LPD)<n>Our proposed method exceeds current state-of-the-art networks on various synthetic and real-world TM benchmarks with significantly faster inference speed.
- Score: 13.073844945948132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atmospheric turbulence is a major source of image degradation in long-range imaging systems. Although numerous deep learning-based turbulence mitigation (TM) methods have been proposed, many are slow, memory-hungry, and do not generalize well. In the spatial domain, methods based on convolutional operators have a limited receptive field, so they cannot handle a large spatial dependency required by turbulence. In the temporal domain, methods relying on self-attention can, in theory, leverage the lucky effects of turbulence, but their quadratic complexity makes it difficult to scale to many frames. Traditional recurrent aggregation methods face parallelization challenges. In this paper, we present a new TM method based on two concepts: (1) A turbulence mitigation network based on the Selective State Space Model (MambaTM). MambaTM provides a global receptive field in each layer across spatial and temporal dimensions while maintaining linear computational complexity. (2) Learned Latent Phase Distortion (LPD). LPD guides the state space model. Unlike classical Zernike-based representations of phase distortion, the new LPD map uniquely captures the actual effects of turbulence, significantly improving the model's capability to estimate degradation by reducing the ill-posedness. Our proposed method exceeds current state-of-the-art networks on various synthetic and real-world TM benchmarks with significantly faster inference speed. The code is available at http://github.com/xg416/MambaTM.
Related papers
- One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.<n>To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.<n>Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - STNMamba: Mamba-based Spatial-Temporal Normality Learning for Video Anomaly Detection [48.997518615379995]
Video anomaly detection (VAD) has been extensively researched due to its potential for intelligent video systems.<n>Most existing methods based on CNNs and transformers still suffer from substantial computational burdens.<n>We propose a lightweight and effective Mamba-based network named STNMamba to enhance the learning of spatial-temporal normality.
arXiv Detail & Related papers (2024-12-28T08:49:23Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.<n>This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - Spatio-Temporal Turbulence Mitigation: A Translational Perspective [13.978156774471744]
We present the Deep Atmospheric TUrbulence Mitigation network ( DATUM)
DATUM aims to overcome major challenges when transitioning from classical to deep learning approaches.
A large-scale training dataset, ATSyn, is presented as a co-invention to enable generalization in real turbulence.
arXiv Detail & Related papers (2024-01-08T21:35:05Z) - AT-DDPM: Restoring Faces degraded by Atmospheric Turbulence using
Denoising Diffusion Probabilistic Models [64.24948495708337]
Atmospheric turbulence causes significant degradation to image quality by introducing blur and geometric distortion.
Various deep learning-based single image atmospheric turbulence mitigation methods, including CNN-based and GAN inversion-based, have been proposed.
Denoising Diffusion Probabilistic Models (DDPMs) have recently gained some traction because of their stable training process and their ability to generate high quality images.
arXiv Detail & Related papers (2022-08-24T03:13:04Z) - Single Frame Atmospheric Turbulence Mitigation: A Benchmark Study and A
New Physics-Inspired Transformer Model [82.23276183684001]
We propose a physics-inspired transformer model for imaging through atmospheric turbulence.
The proposed network utilizes the power of transformer blocks to jointly extract a dynamical turbulence distortion map.
We present two new real-world turbulence datasets that allow for evaluation with both classical objective metrics and a new task-driven metric using text recognition accuracy.
arXiv Detail & Related papers (2022-07-20T17:09:16Z) - Imaging through the Atmosphere using Turbulence Mitigation Transformer [15.56320865332645]
Restoring images distorted by atmospheric turbulence is a ubiquitous problem in long-range imaging applications.
Existing deep-learning-based methods have demonstrated promising results in specific testing conditions.
We introduce the turbulence mitigation transformer (TMT) that explicitly addresses these issues.
arXiv Detail & Related papers (2022-07-13T18:33:26Z) - Atmospheric Turbulence Removal with Complex-Valued Convolutional Neural
Network [2.657505380055164]
Atmospheric turbulence distorts visual imagery and is always problematic for information interpretation by both human and machine.
Deep learning-based approaches have gained more attention but currently work efficiently only on static scenes.
This paper presents a novel learning-based framework offering short temporal spanning to support dynamic scenes.
arXiv Detail & Related papers (2022-04-14T14:29:32Z) - Learning to Restore a Single Face Image Degraded by Atmospheric
Turbulence using CNNs [93.72048616001064]
Images captured under such condition suffer from a combination of geometric deformation and space varying blur.
We present a deep learning-based solution to the problem of restoring a turbulence-degraded face image.
arXiv Detail & Related papers (2020-07-16T15:25:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.