Transfer learning from first-principles calculations to experiments with chemistry-informed domain transformation
- URL: http://arxiv.org/abs/2504.02848v2
- Date: Mon, 07 Apr 2025 07:29:31 GMT
- Title: Transfer learning from first-principles calculations to experiments with chemistry-informed domain transformation
- Authors: Yuta Yahagi, Kiichi Obuchi, Fumihiko Kosaka, Kota Matsui,
- Abstract summary: We propose an efficient transfer learning scheme from first-principles calculations to experiments based on the chemistry-informed domain transformation.<n>As a proof-of-concept, we predict the catalyst activity for the reverse water-gas shift reaction by using the abundant first-principles data in addition to the experimental data.<n>A significantly high accuracy was achieved despite using a few (less than ten) target data in domain transformation, whose accuracy is one order of magnitude smaller than that of a full scratch model trained with over 100 target data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation-to-Real (Sim2Real) transfer learning, the machine learning technique that efficiently solves a real-world task by leveraging knowledge from computational data, has received increasing attention in materials science as a promising solution to the scarcity of experimental data. We proposed an efficient transfer learning scheme from first-principles calculations to experiments based on the chemistry-informed domain transformation, that integrates the heterogeneous source and target domains by harnessing the underlying physics and chemistry. The proposed method maps the computational data from the simulation space (source domain) into the space of experimental data (target domain). During this process, these qualitatively different domains are efficiently integrated by a couple of prior knowledge of chemistry, (1) the statistical ensemble, and (2) the relationship between source and target quantities. As a proof-of-concept, we predict the catalyst activity for the reverse water-gas shift reaction by using the abundant first-principles data in addition to the experimental data. Through the demonstration, we confirmed that the transfer learning model exhibits positive transfer in accuracy and data efficiency. In particular, a significantly high accuracy was achieved despite using a few (less than ten) target data in domain transformation, whose accuracy is one order of magnitude smaller than that of a full scratch model trained with over 100 target data. This result indicates that the proposed method leverages the high prediction performance with few target data, which helps to save the number of trials in real laboratories.
Related papers
- Scaling Law of Sim2Real Transfer Learning in Expanding Computational Materials Databases for Real-World Predictions [13.20562263181952]
Fine-tuning a predictor pretrained on a computational database to a real system can result in models with outstanding generalization capabilities.
This study demonstrates the scaling law of simulation-to-real (Sim2Real) transfer learning for several machine learning tasks in materials science.
arXiv Detail & Related papers (2024-08-07T18:47:58Z) - Discovering physical laws with parallel combinatorial tree search [57.05912962368898]
Symbolic regression plays a crucial role in scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.<n>Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade.<n>We introduce a parallel tree search (PCTS) model to efficiently distill generic mathematical expressions from limited data.
arXiv Detail & Related papers (2024-07-05T10:41:15Z) - Transformer-Powered Surrogates Close the ICF Simulation-Experiment Gap with Extremely Limited Data [24.24053233941972]
This paper presents a novel transformer-powered approach for enhancing prediction accuracy in multi-modal output scenarios.
The proposed approach integrates transformer-based architecture with a novel graph-based hyper- parameter optimization technique.
We demonstrate the efficacy of our approach on inertial confinement fusion experiments, where only 10 shots of real-world data are available.
arXiv Detail & Related papers (2023-12-06T17:53:06Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Optimal transfer protocol by incremental layer defrosting [66.76153955485584]
Transfer learning is a powerful tool enabling model training with limited amounts of data.
The simplest transfer learning protocol is based on freezing" the feature-extractor layers of a network pre-trained on a data-rich source task.
We show that this protocol is often sub-optimal and the largest performance gain may be achieved when smaller portions of the pre-trained network are kept frozen.
arXiv Detail & Related papers (2023-03-02T17:32:11Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - Estimation and inference for transfer learning with high-dimensional
quantile regression [3.4510296013600374]
We propose a transfer learning procedure in the framework of high-dimensional quantile regression models.
We establish error bounds of transfer learning estimator based on delicately selected transferable source domains.
By adopting data-splitting technique, we advocate a transferability detection approach that guarantees to circumvent negative transfer.
arXiv Detail & Related papers (2022-11-26T14:40:19Z) - An Exploration of Data Efficiency in Intra-Dataset Task Transfer for
Dialog Understanding [65.75873687351553]
This study explores the effects of varying quantities of target task training data on sequential transfer learning in the dialog domain.
Unintuitively, our data shows that often target task training data size has minimal effect on how sequential transfer learning performs compared to the same model without transfer learning.
arXiv Detail & Related papers (2022-10-21T04:36:46Z) - Learning Similarity Metrics for Volumetric Simulations with Multiscale
CNNs [25.253880881581956]
We propose a similarity model based on entropy, which allows for the creation of physically meaningful ground truth distances.
We create collections of fields from numerical PDE solvers and existing simulation data repositories.
A multiscale CNN architecture that computes a volumetric similarity metric (VolSiM) is proposed.
arXiv Detail & Related papers (2022-02-08T19:19:08Z) - Cognitive simulation models for inertial confinement fusion: Combining
simulation and experimental data [0.0]
Researchers rely heavily on computer simulations to explore the design space in search of high-performing implosions.
For more effective design and investigation, simulations require input from past experimental data to better predict future performance.
We describe a cognitive simulation method for combining simulation and experimental data into a common, predictive model.
arXiv Detail & Related papers (2021-03-19T02:00:14Z) - Effectiveness of Arbitrary Transfer Sets for Data-free Knowledge
Distillation [28.874162427052905]
We investigate the effectiveness of "arbitrary transfer sets" such as random noise, publicly available synthetic, and natural datasets.
We find surprising effectiveness of using arbitrary data to conduct knowledge distillation when this dataset is "target-class balanced"
arXiv Detail & Related papers (2020-11-18T06:33:20Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.