論文の概要: A Status Quo Investigation of Large Language Models towards Cost-Effective CFD Automation with OpenFOAMGPT: ChatGPT vs. Qwen vs. Deepseek
- arxiv url: http://arxiv.org/abs/2504.02888v1
- Date: Wed, 02 Apr 2025 14:04:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:48:39.818418
- Title: A Status Quo Investigation of Large Language Models towards Cost-Effective CFD Automation with OpenFOAMGPT: ChatGPT vs. Qwen vs. Deepseek
- Title(参考訳): OpenFOAMGPTによるコスト効果CFD自動化に向けた大規模言語モデルの実態調査: ChatGPT vs. Qwen vs. Deepseek
- Authors: Wenkang Wang, Ran Xu, Jingsen Feng, Qingfu Zhang, Xu Chu,
- Abstract要約: 複数の大言語モデルを用いたOpenFOAMGPTの性能評価を行った。
いくつかのモデルでは、境界条件の調整などの異なるCFDタスクを効率的に管理する。
QwQ-32Bのようなより小さなモデルは、複雑なプロセスのために有効なソルバファイルを生成するのに苦労した。
- 参考スコア(独自算出の注目度): 26.280882787841204
- License:
- Abstract: We evaluated the performance of OpenFOAMGPT incorporating multiple large-language models. Some of the present models efficiently manage different CFD tasks such as adjusting boundary conditions, turbulence models, and solver configurations, although their token cost and stability vary. Locally deployed smaller models like QwQ-32B struggled with generating valid solver files for complex processes. Zero-shot prompting commonly failed in simulations with intricate settings, even for large models. Challenges with boundary conditions and solver keywords stress the requirement for expert supervision, indicating that further development is needed to fully automate specialized CFD simulations.
- Abstract(参考訳): 複数の大言語モデルを用いたOpenFOAMGPTの性能評価を行った。
いくつかのモデルでは, トークンコストと安定性は異なるものの, 境界条件, 乱流モデル, ソルバ構成の調整などの異なるCFDタスクを効率的に管理する。
ローカルにデプロイされたQwQ-32Bのような小さなモデルは、複雑なプロセスに有効なソルバファイルを生成するのに苦労した。
ゼロショットのプロンプトは、大規模なモデルであっても複雑な設定でシミュレーションで一般的に失敗する。
境界条件とソルバキーワードの課題は、専門的なCFDシミュレーションを完全に自動化するためには、さらなる開発が必要であることを示している。
関連論文リスト
- AutoFLUKA: A Large Language Model Based Framework for Automating Monte Carlo Simulations in FLUKA [6.571041942559539]
モンテカルロ (MC) シミュレーションは、科学と工学の分野で現実世界のシナリオを再現するために不可欠である。
堅牢性と汎用性にもかかわらず、FLUKAは自動化と外部の後処理ツールとの統合において大きな制限に直面している。
本研究では,これらの制約に対処するLarge Language Models(LLM)とAIエージェントの可能性について検討する。
本稿では、LangChain Python Frameworkを用いて開発され、FLUKAの典型的なMCシミュレーションを自動化するAIエージェントであるAutoFLUKAを紹介する。
論文 参考訳(メタデータ) (2024-10-19T21:50:11Z) - SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models [2.867517731896504]
SQFTは、大規模事前学習モデルの低精度スパースパラメータ効率微調整のためのエンドツーエンドソリューションである。
SQFTは資源制約のある環境で効果的なモデル操作を可能にする。
SQFTはまた、異なる数値精度の量子化重みとアダプタを持つという課題にも対処している。
論文 参考訳(メタデータ) (2024-10-01T19:49:35Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed Neural Operators [78.64101336150419]
カオスシステムの長期的挙動を予測することは、気候モデリングなどの様々な応用に不可欠である。
このような完全解法シミュレーションに対する別のアプローチは、粗いグリッドを使用して、時間テキストモデルによってエラーを修正することである。
この制限を克服する物理インフォームド・ニューラル演算子(PINO)を用いたエンド・ツー・エンドの学習手法を提案する。
論文 参考訳(メタデータ) (2024-08-09T17:05:45Z) - MetaOpenFOAM: an LLM-based multi-agent framework for CFD [11.508919041921942]
MetaOpenFOAMは、新しいマルチエージェントコラボレーションフレームワークである。
入力として自然言語のみを用いてCFDシミュレーションタスクを完了することを目的としている。
MetaGPTのアセンブリラインパラダイムのパワーを利用する。
論文 参考訳(メタデータ) (2024-07-31T04:01:08Z) - Three-Stage Adjusted Regression Forecasting (TSARF) for Software Defect
Prediction [5.826476252191368]
非均一ポアソン過程 (NHPP) SRGM が最も一般的に用いられるモデルである。
モデル複雑性の増大は、堅牢で計算効率のよいアルゴリズムを識別する上での課題である。
論文 参考訳(メタデータ) (2024-01-31T02:19:35Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z) - Aligned Cross Entropy for Non-Autoregressive Machine Translation [120.15069387374717]
非自己回帰モデルの学習における代替的損失関数としてアライメントクロスエントロピー(AXE)を提案する。
AXEに基づく条件付きマスキング言語モデル(CMLM)のトレーニングは、主要なWMTベンチマークの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2020-04-03T16:24:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。