論文の概要: ChatCFD: an End-to-End CFD Agent with Domain-specific Structured Thinking
- arxiv url: http://arxiv.org/abs/2506.02019v1
- Date: Wed, 28 May 2025 08:43:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:34.786179
- Title: ChatCFD: an End-to-End CFD Agent with Domain-specific Structured Thinking
- Title(参考訳): ChatCFD:ドメイン固有の構造化思考を備えたエンドツーエンドCFDエージェント
- Authors: E Fan, Weizong Wang, Tianhan Zhang,
- Abstract要約: ChatCFDはOpenFOAMフレームワーク内で大きな言語モデル駆動のCFDパイプラインを自動化する。
ユーザは、自然言語プロンプトや出版文献から、最小限の専門知識で複雑なシミュレーションを設定および実行することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computational Fluid Dynamics (CFD) is essential for scientific and engineering advancements but is limited by operational complexity and the need for extensive expertise. This paper presents ChatCFD, a large language model-driven pipeline that automates CFD workflows within the OpenFOAM framework. It enables users to configure and execute complex simulations from natural language prompts or published literature with minimal expertise. The innovation is its structured approach to database construction, configuration validation, and error reflection, integrating CFD and OpenFOAM knowledge with general language models to improve accuracy and adaptability. Validation shows ChatCFD can autonomously reproduce published CFD results, handling complex, unseen configurations beyond basic examples, a task challenging for general language models.
- Abstract(参考訳): 計算流体力学(CFD、Computational Fluid Dynamics)は、科学と工学の進歩に不可欠であるが、運用上の複雑さと広範な専門知識の必要性によって制限されている。
本稿では,OpenFOAMフレームワーク内でCFDワークフローを自動化する大規模言語モデル駆動パイプラインChatCFDを提案する。
ユーザは、自然言語プロンプトや出版文献から、最小限の専門知識で複雑なシミュレーションを設定および実行することができる。
この革新は、データベースの構築、構成検証、エラーリフレクションに対する構造化されたアプローチであり、CFDとOpenFOAMの知識を汎用言語モデルに統合し、正確性と適応性を向上させる。
検証は、ChatCFDが公表されたCFD結果を自律的に再現できることを示し、基本的な例を越えて、複雑で見えない構成を扱う。
関連論文リスト
- Fine-tuning a Large Language Model for Automating Computational Fluid Dynamics Simulations [11.902947290205645]
大規模言語モデル(LLM)は高度な科学計算を持ち、CFDでの使用は自動化されている。
ドメイン固有LLM適応に着目した新しいアプローチを提案する。
マルチエージェントフレームワークはプロセスをオーケストレーションし、入力を自律的に検証し、構成を生成し、シミュレーションを実行し、エラーを修正する。
論文 参考訳(メタデータ) (2025-04-13T14:35:30Z) - Flex: End-to-End Text-Instructed Visual Navigation from Foundation Model Features [59.892436892964376]
本稿では,視覚に基づく制御ポリシを用いて,ロバストな閉ループ性能を実現するために必要な最小限のデータ要件とアーキテクチャ適応について検討する。
この知見はFlex (Fly lexically) で合成され, 凍結パッチワイド特徴抽出器として, 事前学習された視覚言語モデル (VLM) を用いたフレームワークである。
本研究では,本手法の有効性を,行動クローンによる訓練を実世界のシーンに応用した,四重項フライ・トゥ・ターゲットタスクに適用した。
論文 参考訳(メタデータ) (2024-10-16T19:59:31Z) - A Large Language Model and Denoising Diffusion Framework for Targeted Design of Microstructures with Commands in Natural Language [0.0]
自然言語処理(NLP)、大言語モデル(LLM)、拡散確率モデル(DDPM)を統合したフレームワークを提案する。
我々のフレームワークは、事前訓練されたLLMによって駆動されるコンテキストデータ拡張を用いて、多様なマイクロ構造記述子のデータセットを生成し、拡張する。
再学習されたNERモデルは、ユーザが提供する自然言語入力から関連するマイクロ構造記述子を抽出し、DDPMによってターゲットとなる機械的特性とトポロジ的特徴を持つマイクロ構造を生成する。
論文 参考訳(メタデータ) (2024-09-22T14:45:22Z) - MetaOpenFOAM: an LLM-based multi-agent framework for CFD [11.508919041921942]
MetaOpenFOAMは、新しいマルチエージェントコラボレーションフレームワークである。
入力として自然言語のみを用いてCFDシミュレーションタスクを完了することを目的としている。
MetaGPTのアセンブリラインパラダイムのパワーを利用する。
論文 参考訳(メタデータ) (2024-07-31T04:01:08Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
トランスフォーマー層の構造を改良し,より効率的なアーキテクチャを実現する。
自己認識モジュールを補完する畳み込みモジュールを追加し、局所的およびグローバルな相互作用の学習を分離する。
得られたアーキテクチャを言語表現学習に適用し、異なるスケールのBERTモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2021-06-10T15:41:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。