Beyond Accuracy: The Role of Calibration in Self-Improving Large Language Models
- URL: http://arxiv.org/abs/2504.02902v1
- Date: Thu, 03 Apr 2025 04:39:54 GMT
- Title: Beyond Accuracy: The Role of Calibration in Self-Improving Large Language Models
- Authors: Liangjie Huang, Dawei Li, Huan Liu, Lu Cheng,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable self-improvement capabilities.<n>We investigate the impact on confidence estimation by investigating the impact on confidence estimation.
- Score: 15.638622371475853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable self-improvement capabilities, whereby models iteratively revise their outputs through self-generated feedback. While this reflective mechanism has shown promise in enhancing task performance, recent studies suggest that it may also introduce undesirable biases-most notably, self-bias, or the tendency of LLMs to favor their own prior outputs. In this work, we extend this line of inquiry by investigating the impact on confidence estimation. We evaluate three representative self-improvement paradigms-basic prompting, Chain-of-Thought (CoT) prompting, and tuning-based methods and find that iterative self-improvement can lead to systematic overconfidence, as evidenced by a steadily increasing Expected Calibration Error (ECE) and lower accuracy with high confidence. We then further explore the integration of confidence calibration techniques with self-improvement. Specifically, we compare three strategies: (1) applying calibration after multiple rounds of self-improvement, (2) calibrating before self-improvement, and (3) applying calibration iteratively at each self-improvement step. Our results show that iterative calibration is most effective in reducing ECE, yielding improved calibration. Our work pioneers the study of self-improving LLMs from a calibration perspective, offering valuable insights into balancing model performance and reliability.
Related papers
- Rewarding Doubt: A Reinforcement Learning Approach to Confidence Calibration of Large Language Models [34.59785123314865]
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers.
We introduce a novel Reinforcement Learning (RL) approach for LLM calibration that fine-tunes LLMs to elicit calibrated confidence estimations in their answers to factual questions.
arXiv Detail & Related papers (2025-03-04T13:48:50Z) - ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE) is an efficient framework that enables LLMs to self-correct their outputs through self-verification.<n>Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
arXiv Detail & Related papers (2025-02-20T13:50:02Z) - Training Language Models to Self-Correct via Reinforcement Learning [98.35197671595343]
Self-correction has been found to be largely ineffective in modern large language models (LLMs)
We develop a multi-turn online reinforcement learning approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data.
We find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
arXiv Detail & Related papers (2024-09-19T17:16:21Z) - Enhancing Healthcare LLM Trust with Atypical Presentations Recalibration [20.049443396032423]
Black-box large language models (LLMs) are increasingly deployed in various environments.
LLMs often exhibit overconfidence, leading to potential risks and misjudgments.
We propose a novel method, textitAtypical presentations Recalibration, which leverages atypical presentations to adjust the model's confidence estimates.
arXiv Detail & Related papers (2024-09-05T03:45:35Z) - On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept [36.27550578296276]
Large Language Models (LLMs) are able to improve their responses when instructed to do so, a capability known as self-correction.
In intrinsic self-correction is evident in various applications, but how and why it is effective remains unknown.
We show that intrinsic self-correction can be progressively improved, allowing it to approach a converged state.
arXiv Detail & Related papers (2024-06-04T14:55:43Z) - Confidence Calibration and Rationalization for LLMs via Multi-Agent Deliberation [18.815226646364476]
Existing calibration methods for large language models (LLMs) focus on estimating or eliciting individual confidence without taking full advantage of the "Collective Wisdom"
We propose Collaborative, a post-hoc training-free calibration strategy that leverages the collaborative and expressive capabilities of multiple tool-augmented LLM agents in a simulated group deliberation process.
arXiv Detail & Related papers (2024-04-14T02:40:43Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
Large Language Models' (LLMs) confidence scores should align with the actual likelihood of its responses being correct.
Current confidence elicitation methods and calibration metrics rely on a binary true/false assessment of response correctness.
We introduce a unified calibration framework, in which both the correctness of the LLMs' responses and their associated confidence levels are treated as distributions across a range of scores.
arXiv Detail & Related papers (2024-02-09T17:00:32Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
Confidence calibration serves as a crucial tool for gauging the reliability of deep models.
We conduct a systematic examination of the calibration of aligned language models throughout the entire construction process.
Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.
arXiv Detail & Related papers (2023-11-22T08:57:55Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models.
We show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data.
Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value.
arXiv Detail & Related papers (2023-11-03T05:41:25Z) - A Close Look into the Calibration of Pre-trained Language Models [56.998539510508515]
Pre-trained language models (PLMs) may fail in giving reliable estimates of their predictive uncertainty.
We study the dynamic change in PLMs' calibration performance in training.
We extend two recently proposed learnable methods that directly collect data to train models to have reasonable confidence estimations.
arXiv Detail & Related papers (2022-10-31T21:31:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.