Noiser: Bounded Input Perturbations for Attributing Large Language Models
- URL: http://arxiv.org/abs/2504.02911v1
- Date: Thu, 03 Apr 2025 10:59:37 GMT
- Title: Noiser: Bounded Input Perturbations for Attributing Large Language Models
- Authors: Mohammad Reza Ghasemi Madani, Aryo Pradipta Gema, Gabriele Sarti, Yu Zhao, Pasquale Minervini, Andrea Passerini,
- Abstract summary: We introduce Noiser, a perturbation-based FA method that imposes bounded noise on each input embedding.<n>We demonstrate that Noiser consistently outperforms existing gradient-based, attention-based, and perturbation-based FA methods in terms of both faithfulness and answerability.
- Score: 17.82404809465846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature attribution (FA) methods are common post-hoc approaches that explain how Large Language Models (LLMs) make predictions. Accordingly, generating faithful attributions that reflect the actual inner behavior of the model is crucial. In this paper, we introduce Noiser, a perturbation-based FA method that imposes bounded noise on each input embedding and measures the robustness of the model against partially noised input to obtain the input attributions. Additionally, we propose an answerability metric that employs an instructed judge model to assess the extent to which highly scored tokens suffice to recover the predicted output. Through a comprehensive evaluation across six LLMs and three tasks, we demonstrate that Noiser consistently outperforms existing gradient-based, attention-based, and perturbation-based FA methods in terms of both faithfulness and answerability, making it a robust and effective approach for explaining language model predictions.
Related papers
- Counterfactuals As a Means for Evaluating Faithfulness of Attribution Methods in Autoregressive Language Models [6.394084132117747]
We propose a technique that leverages counterfactual generation to evaluate the faithfulness of attribution methods for autoregressive language models.<n>Our technique generates fluent, in-distribution counterfactuals, making the evaluation protocol more reliable.
arXiv Detail & Related papers (2024-08-21T00:17:59Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
We propose a complete framework for extending concept-based interpretability methods to NLP.
We optimize for features whose existence causes the output predictions to change substantially.
Our method achieves superior results on predictive impact, usability, and faithfulness compared to the baselines.
arXiv Detail & Related papers (2023-05-03T14:48:27Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
We introduce learning from Language Feedback (ILF), a new approach that utilizes more informative language feedback.
ILF consists of three steps that are applied iteratively: first, conditioning the language model on the input, an initial LM output, and feedback to generate refinements.
We show theoretically that ILF can be viewed as Bayesian Inference, similar to Reinforcement Learning from human feedback.
arXiv Detail & Related papers (2023-03-28T17:04:15Z) - Towards Improving Faithfulness in Abstractive Summarization [37.19777407790153]
We propose a Faithfulness Enhanced Summarization model (FES) to improve fidelity in abstractive summarization.
Our model outperforms strong baselines in experiments on CNN/DM and XSum.
arXiv Detail & Related papers (2022-10-04T19:52:09Z) - Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning [57.4036085386653]
We show that prompt-based models for sentence pair classification tasks still suffer from a common pitfall of adopting inferences based on lexical overlap.
We then show that adding a regularization that preserves pretraining weights is effective in mitigating this destructive tendency of few-shot finetuning.
arXiv Detail & Related papers (2021-09-09T10:10:29Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
We propose noise entropy regularisation (NoiER) as an efficient learning paradigm that solves the problem without auxiliary models and additional data.
The proposed approach improved traditional OOD detection evaluation metrics by 55% on average compared to the original fine-tuned models.
arXiv Detail & Related papers (2021-08-29T06:58:28Z) - A Framework to Learn with Interpretation [2.3741312212138896]
We present a novel framework to jointly learn a predictive model and its associated interpretation model.
We seek for a small-size dictionary of high level attribute functions that take as inputs the outputs of selected hidden layers.
A detailed pipeline to visualize the learnt features is also developed.
arXiv Detail & Related papers (2020-10-19T09:26:28Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.