Route Recommendations for Traffic Management Under Learned Partial Driver Compliance
- URL: http://arxiv.org/abs/2504.02993v1
- Date: Thu, 03 Apr 2025 19:31:16 GMT
- Title: Route Recommendations for Traffic Management Under Learned Partial Driver Compliance
- Authors: Heeseung Bang, Jung-Hoon Cho, Cathy Wu, Andreas A. Malikopoulos,
- Abstract summary: We propose a route recommendation framework that explicitly learns partial driver compliance and optimize traffic flow under realistic adherence.<n>Our approach significantly reduces travel time compared to baseline strategies.
- Score: 4.71399209897823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to mitigate congestion in traffic management systems by guiding travelers along system-optimal (SO) routes. However, we recognize that most theoretical approaches assume perfect driver compliance, which often does not reflect reality, as drivers tend to deviate from recommendations to fulfill their personal objectives. Therefore, we propose a route recommendation framework that explicitly learns partial driver compliance and optimizes traffic flow under realistic adherence. We first compute an SO edge flow through flow optimization techniques. Next, we train a compliance model based on historical driver decisions to capture individual responses to our recommendations. Finally, we formulate a stochastic optimization problem that minimizes the gap between the target SO flow and the realized flow under conditions of imperfect adherence. Our simulations conducted on a grid network reveal that our approach significantly reduces travel time compared to baseline strategies, demonstrating the practical advantage of incorporating learned compliance into traffic management.
Related papers
- AI Recommendation Systems for Lane-Changing Using Adherence-Aware Reinforcement Learning [4.271235935891555]
We present an adherence-aware reinforcement learning (RL) approach aimed at seeking optimal lane-changing recommendations within a semi-autonomous driving environment.
The problem is framed within a Markov decision process setting and is addressed through an adherence-aware deep Q network.
arXiv Detail & Related papers (2025-04-28T18:38:39Z) - An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems [11.655502119510134]
Complex urban road networks with high vehicle occupancy frequently face severe traffic congestion.
Most current traffic light management systems rely on human-crafted decisions, which may not adapt well to diverse traffic patterns.
We introduce a novel and practical framework to formulate the optimization of such design components using an offline meta black-box optimization.
arXiv Detail & Related papers (2024-08-14T06:57:58Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Reinforcement Learning with Model Predictive Control for Highway Ramp Metering [14.389086937116582]
This work explores the synergy between model-based and learning-based strategies to enhance traffic flow management.<n>The control problem is formulated as an RL task by crafting a suitable stage cost function.<n>An MPC-based RL approach, which leverages the MPC optimal problem as a function approximation for the RL algorithm, is proposed to learn to efficiently control an on-ramp.
arXiv Detail & Related papers (2023-11-15T09:50:54Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
Trajectory planning aims to produce a globally optimal route for Autonomous Passenger Vehicles.
Existing implementations utilizing the vehicle bicycle kinematic model may not guarantee controllable trajectories.
We augment this model by higher-order terms, including the first and second-order derivatives of curvature and longitudinal jerk.
arXiv Detail & Related papers (2023-09-25T22:30:18Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Reinforcement Learning Approaches for Traffic Signal Control under
Missing Data [5.896742981602458]
In real-world urban scenarios, missing observation of traffic states may frequently occur due to the lack of sensors.
We propose two solutions: the first one imputes the traffic states to enable adaptive control, and the second one imputes both states and rewards to enable adaptive control and the training of RL agents.
arXiv Detail & Related papers (2023-04-21T03:26:33Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
We propose a DRL-based signal control system that adjusts traffic signals according to the current congestion situation on intersections.
To deal with the congestion on roads behind the intersection, we used re-routing technique to load balance the vehicles on road networks.
arXiv Detail & Related papers (2022-06-28T02:46:20Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.