論文の概要: Task as Context Prompting for Accurate Medical Symptom Coding Using Large Language Models
- arxiv url: http://arxiv.org/abs/2504.03051v1
- Date: Thu, 03 Apr 2025 21:57:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:40.652571
- Title: Task as Context Prompting for Accurate Medical Symptom Coding Using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた正確な医学症状符号化のためのコンテキストプロンプトとしてのタスク
- Authors: Chengyang He, Wenlong Zhang, Violet Xinying Chen, Yue Ning, Ping Wang,
- Abstract要約: Task as Context (TACO) Promptingは、タスク固有のコンテキストをプロンプトに埋め込むことで、タスクの抽出とリンクを統一する新しいフレームワークである。
また,Vacine Adverse Event Reporting System (VAERS) レポートから得られた人間による注釈付きデータセットであるSYMPCODERについても紹介した。
- 参考スコア(独自算出の注目度): 11.510561099220872
- License:
- Abstract: Accurate medical symptom coding from unstructured clinical text, such as vaccine safety reports, is a critical task with applications in pharmacovigilance and safety monitoring. Symptom coding, as tailored in this study, involves identifying and linking nuanced symptom mentions to standardized vocabularies like MedDRA, differentiating it from broader medical coding tasks. Traditional approaches to this task, which treat symptom extraction and linking as independent workflows, often fail to handle the variability and complexity of clinical narratives, especially for rare cases. Recent advancements in Large Language Models (LLMs) offer new opportunities but face challenges in achieving consistent performance. To address these issues, we propose Task as Context (TACO) Prompting, a novel framework that unifies extraction and linking tasks by embedding task-specific context into LLM prompts. Our study also introduces SYMPCODER, a human-annotated dataset derived from Vaccine Adverse Event Reporting System (VAERS) reports, and a two-stage evaluation framework to comprehensively assess both symptom linking and mention fidelity. Our comprehensive evaluation of multiple LLMs, including Llama2-chat, Jackalope-7b, GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o, demonstrates TACO's effectiveness in improving flexibility and accuracy for tailored tasks like symptom coding, paving the way for more specific coding tasks and advancing clinical text processing methodologies.
- Abstract(参考訳): ワクチンの安全性レポートなどの非構造化臨床テキストからの正確な医療症状のコーディングは、薬物移動および安全監視の応用において重要な課題である。
この研究に合わせた症状符号化では、ニュアンスドの症状をMedDRAのような標準化された語彙に識別し、リンクし、医学的なコーディングタスクと区別する。
症状抽出とリンクを独立したワークフローとして扱う従来のアプローチは、特に稀な症例において、臨床物語の多様性と複雑さを扱うのに失敗することが多い。
大規模言語モデル(LLM)の最近の進歩は、新しい機会を提供するが、一貫したパフォーマンスを達成する上での課題に直面している。
タスク固有のコンテキストをLLMプロンプトに埋め込むことでタスクの抽出とリンクを統一する新しいフレームワークであるTask as Context (TACO) Promptingを提案する。
また,Vaccine Adverse Event Reporting System(VAERS)レポートから得られた人手による注釈付きデータセットであるSYMPCODERと,症状リンクと言及忠実度の両方を包括的に評価する2段階評価フレームワークについても紹介した。
Llama2-chat, Jackalope-7b, GPT-3.5 Turbo, GPT-4 Turbo, GPT-4oを含む複数のLCMの総合的な評価により, TACOが症状符号化やより具体的なコーディング作業への道を開いたり, 臨床テキスト処理手法を進歩させたりすることの柔軟性と精度向上に有効であることを実証した。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
医療情報抽出タスクにおける幻覚の問題を解決するために,ALCD(ALternate Contrastive Decoding)を導入する。
ALCDは, 従来の復号法に比べて幻覚の解消に有意な改善が見られた。
論文 参考訳(メタデータ) (2024-10-21T07:19:19Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text Summaries [56.31117605097345]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question
Answering and Clinical Reasoning [14.366349078707263]
RJUA-MedDQAは医学専門分野における総合的なベンチマークである。
本稿では医学専門分野の総合的なベンチマークであるRJUA-MedDQAを紹介する。
論文 参考訳(メタデータ) (2024-02-19T06:57:02Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - CohortGPT: An Enhanced GPT for Participant Recruitment in Clinical Study [17.96401880059829]
ChatGPTのような大規模言語モデル(LLM)は、様々な下流タスクで大きな成功を収めています。
我々は,知識グラフを補助情報として,予測を行う際のLCMを導くことを提案する。
本手法は, 微調整手法と比較して, 良好な性能が得られる。
論文 参考訳(メタデータ) (2023-07-21T04:43:00Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Are Large Language Models Ready for Healthcare? A Comparative Study on
Clinical Language Understanding [12.128991867050487]
大規模言語モデル(LLM)は、医療を含む様々な分野で大きな進歩を遂げている。
本研究では,臨床言語理解タスクの領域における最先端LCMの評価を行った。
論文 参考訳(メタデータ) (2023-04-09T16:31:47Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
本稿では,タスク固有の命令でPLMを利用する包括的インストラクション(CINS)を提案する。
命令のスキーマ(定義、制約、プロンプト)と、ToDの3つの重要な下流タスクに対するカスタマイズされた実現を設計する。
これらのToDタスクに対して,小さな検証データを用いた現実的な数ショット学習シナリオで実験を行った。
論文 参考訳(メタデータ) (2021-09-10T03:23:06Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - Rare Disease Identification from Clinical Notes with Ontologies and Weak
Supervision [3.6471045233540806]
テキストからUMLSのプロセスは、ドメインの専門家による注釈付きデータなしで、監督の弱さで大幅に改善できることを示す。
解析の結果, パイプライン処理の総放電サマリーは, 病院入院時の手動ICDコードにほとんど含まれていないケースを表面化できることがわかった。
論文 参考訳(メタデータ) (2021-05-05T11:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。