Task as Context Prompting for Accurate Medical Symptom Coding Using Large Language Models
- URL: http://arxiv.org/abs/2504.03051v1
- Date: Thu, 03 Apr 2025 21:57:17 GMT
- Title: Task as Context Prompting for Accurate Medical Symptom Coding Using Large Language Models
- Authors: Chengyang He, Wenlong Zhang, Violet Xinying Chen, Yue Ning, Ping Wang,
- Abstract summary: Task as Context (TACO) Prompting is a novel framework that unifies extraction and linking tasks by embedding task-specific context into prompts.<n>Our study also introduces SYMPCODER, a human-annotated dataset derived from Vaccine Adverse Event Reporting System (VAERS) reports.
- Score: 11.510561099220872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate medical symptom coding from unstructured clinical text, such as vaccine safety reports, is a critical task with applications in pharmacovigilance and safety monitoring. Symptom coding, as tailored in this study, involves identifying and linking nuanced symptom mentions to standardized vocabularies like MedDRA, differentiating it from broader medical coding tasks. Traditional approaches to this task, which treat symptom extraction and linking as independent workflows, often fail to handle the variability and complexity of clinical narratives, especially for rare cases. Recent advancements in Large Language Models (LLMs) offer new opportunities but face challenges in achieving consistent performance. To address these issues, we propose Task as Context (TACO) Prompting, a novel framework that unifies extraction and linking tasks by embedding task-specific context into LLM prompts. Our study also introduces SYMPCODER, a human-annotated dataset derived from Vaccine Adverse Event Reporting System (VAERS) reports, and a two-stage evaluation framework to comprehensively assess both symptom linking and mention fidelity. Our comprehensive evaluation of multiple LLMs, including Llama2-chat, Jackalope-7b, GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o, demonstrates TACO's effectiveness in improving flexibility and accuracy for tailored tasks like symptom coding, paving the way for more specific coding tasks and advancing clinical text processing methodologies.
Related papers
- Zeus: Zero-shot LLM Instruction for Union Segmentation in Multimodal Medical Imaging [4.341503087761129]
Conducting multimodal learning involves visual and text modalities shown as a solution, but collecting paired vision-language datasets is expensive and time-consuming.
Inspired by the superior ability in numerous cross-modal tasks for Large Language Models (LLMs), we proposed a novel Vision-LLM union framework to address the issues.
arXiv Detail & Related papers (2025-04-09T23:33:35Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
We introduce ALternate Contrastive Decoding (ALCD) to solve hallucination issues in medical information extraction tasks.
ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.
arXiv Detail & Related papers (2024-10-21T07:19:19Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text Summaries [56.31117605097345]
Large language models (LLMs) have shown the potential to generate accurate clinical text summaries, but still struggle with issues regarding grounding and evaluation.<n>Here, we explore a general mitigation framework using Attribute Structuring (AS), which structures the summary evaluation process.<n>AS consistently improves the correspondence between human annotations and automated metrics in clinical text summarization.
arXiv Detail & Related papers (2024-03-01T21:59:03Z) - RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question
Answering and Clinical Reasoning [14.366349078707263]
RJUA-MedDQA is a comprehensive benchmark in the field of medical specialization.
This work introduces RJUA-MedDQA, a comprehensive benchmark in the field of medical specialization.
arXiv Detail & Related papers (2024-02-19T06:57:02Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
Large language models (LLMs) have shown promise in natural language processing (NLP), but their effectiveness on a diverse range of clinical summarization tasks remains unproven.
In this study, we apply adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks.
A clinical reader study with ten physicians evaluates summary, completeness, correctness, and conciseness; in a majority of cases, summaries from our best adapted LLMs are either equivalent (45%) or superior (36%) compared to summaries from medical experts.
arXiv Detail & Related papers (2023-09-14T05:15:01Z) - CohortGPT: An Enhanced GPT for Participant Recruitment in Clinical Study [17.96401880059829]
Large Language Models (LLMs) such as ChatGPT have achieved tremendous success in various downstream tasks.
We propose to use a knowledge graph as auxiliary information to guide the LLMs in making predictions.
Our few-shot learning method achieves satisfactory performance compared with fine-tuning strategies.
arXiv Detail & Related papers (2023-07-21T04:43:00Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Are Large Language Models Ready for Healthcare? A Comparative Study on
Clinical Language Understanding [12.128991867050487]
Large language models (LLMs) have made significant progress in various domains, including healthcare.
In this study, we evaluate state-of-the-art LLMs within the realm of clinical language understanding tasks.
arXiv Detail & Related papers (2023-04-09T16:31:47Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
This paper proposes Comprehensive Instruction (CINS) that exploits PLMs with task-specific instructions.
We design a schema (definition, constraint, prompt) of instructions and their customized realizations for three important downstream tasks in ToD.
Experiments are conducted on these ToD tasks in realistic few-shot learning scenarios with small validation data.
arXiv Detail & Related papers (2021-09-10T03:23:06Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.