Integrating Identity-Based Identification against Adaptive Adversaries in Federated Learning
- URL: http://arxiv.org/abs/2504.03077v1
- Date: Thu, 03 Apr 2025 22:58:27 GMT
- Title: Integrating Identity-Based Identification against Adaptive Adversaries in Federated Learning
- Authors: Jakub Kacper Szelag, Ji-Jian Chin, Lauren Ansell, Sook-Chin Yip,
- Abstract summary: Federated Learning (FL) has emerged as a promising paradigm for privacy-preserving, distributed machine learning.<n>One such threat is the presence of Reconnecting Malicious Clients (RMCs), which exploit FLs open connectivity by reconnecting to the system with modified attack strategies.<n>We propose integration of Identity-Based Identification (IBI) as a security measure within FL environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has recently emerged as a promising paradigm for privacy-preserving, distributed machine learning. However, FL systems face significant security threats, particularly from adaptive adversaries capable of modifying their attack strategies to evade detection. One such threat is the presence of Reconnecting Malicious Clients (RMCs), which exploit FLs open connectivity by reconnecting to the system with modified attack strategies. To address this vulnerability, we propose integration of Identity-Based Identification (IBI) as a security measure within FL environments. By leveraging IBI, we enable FL systems to authenticate clients based on cryptographic identity schemes, effectively preventing previously disconnected malicious clients from re-entering the system. Our approach is implemented using the TNC-IBI (Tan-Ng-Chin) scheme over elliptic curves to ensure computational efficiency, particularly in resource-constrained environments like Internet of Things (IoT). Experimental results demonstrate that integrating IBI with secure aggregation algorithms, such as Krum and Trimmed Mean, significantly improves FL robustness by mitigating the impact of RMCs. We further discuss the broader implications of IBI in FL security, highlighting research directions for adaptive adversary detection, reputation-based mechanisms, and the applicability of identity-based cryptographic frameworks in decentralized FL architectures. Our findings advocate for a holistic approach to FL security, emphasizing the necessity of proactive defence strategies against evolving adaptive adversarial threats.
Related papers
- Towards Resilient Federated Learning in CyberEdge Networks: Recent Advances and Future Trends [20.469263896950437]
We investigate the most recent techniques of resilient federated learning (ResFL) in CyberEdge networks.<n>We focus on joint training with agglomerative deduction and feature-oriented security mechanisms.<n>These advancements offer ultra-low latency, artificial intelligence (AI)-driven network management, and improved resilience against adversarial attacks.
arXiv Detail & Related papers (2025-04-01T23:06:45Z) - Byzantine-Resilient Over-the-Air Federated Learning under Zero-Trust Architecture [68.83934802584899]
We propose a novel Byzantine-robust FL paradigm for over-the-air transmissions, referred to as federated learning with secure adaptive clustering (FedSAC)<n>FedSAC aims to protect a portion of the devices from attacks through zero trust architecture (ZTA) based Byzantine identification and adaptive device clustering.<n> Numerical results substantiate the superiority of the proposed FedSAC over existing methods in terms of both test accuracy and convergence rate.
arXiv Detail & Related papers (2025-03-24T01:56:30Z) - Not All Edges are Equally Robust: Evaluating the Robustness of Ranking-Based Federated Learning [49.68790647579509]
Federated Ranking Learning (FRL) is a state-of-the-art FL framework that stands out for its communication efficiency and resilience to poisoning attacks.<n>We introduce a novel local model poisoning attack against FRL, namely the Vulnerable Edge Manipulation (VEM) attack.<n>Our attack achieves an overall 53.23% attack impact and is 3.7x more impactful than existing methods.
arXiv Detail & Related papers (2025-03-12T00:38:14Z) - Efficient and Trustworthy Block Propagation for Blockchain-enabled Mobile Embodied AI Networks: A Graph Resfusion Approach [60.80257080226662]
We propose a graph Resfusion model-based trustworthy block propagation optimization framework for consortium blockchain-enabled MEANETs.<n>Specifically, we propose an innovative trust calculation mechanism based on the trust cloud model.<n>By leveraging the strengths of graph neural networks and diffusion models, we develop a graph Resfusion model to effectively and adaptively generate the optimal block propagation trajectory.
arXiv Detail & Related papers (2025-01-26T07:47:05Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
Federated Learning (FL) as a distributed machine learning paradigm has introduced new cybersecurity challenges.
This study proposes an innovative security framework inspired by Control-Flow (CFA) mechanisms, traditionally used in cybersecurity.
We authenticate and verify the integrity of model updates across the network, effectively mitigating risks associated with model poisoning and adversarial interference.
arXiv Detail & Related papers (2024-03-15T04:03:34Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Enabling Quartile-based Estimated-Mean Gradient Aggregation As Baseline
for Federated Image Classifications [5.5099914877576985]
Federated Learning (FL) has revolutionized how we train deep neural networks by enabling decentralized collaboration while safeguarding sensitive data and improving model performance.
This paper introduces an innovative solution named Estimated Mean Aggregation (EMA) that not only addresses these challenges but also provides a fundamental reference point as a $mathsfbaseline$ for advanced aggregation techniques in FL systems.
arXiv Detail & Related papers (2023-09-21T17:17:28Z) - Fed-LSAE: Thwarting Poisoning Attacks against Federated Cyber Threat Detection System via Autoencoder-based Latent Space Inspection [0.0]
In cybersecurity, the sensitive data along with the contextual information and high-quality labeling play an essential role.
In this paper, we investigate a novel robust aggregation method for federated learning, namely Fed-LSAE, which takes advantage of latent space representation.
The experimental results on the CIC-ToN-IoT and N-BaIoT datasets confirm the feasibility of our defensive mechanism against cutting-edge poisoning attacks.
arXiv Detail & Related papers (2023-09-20T04:14:48Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.