Enabling Quartile-based Estimated-Mean Gradient Aggregation As Baseline
for Federated Image Classifications
- URL: http://arxiv.org/abs/2309.12267v1
- Date: Thu, 21 Sep 2023 17:17:28 GMT
- Title: Enabling Quartile-based Estimated-Mean Gradient Aggregation As Baseline
for Federated Image Classifications
- Authors: Yusen Wu, Jamie Deng, Hao Chen, Phuong Nguyen, Yelena Yesha
- Abstract summary: Federated Learning (FL) has revolutionized how we train deep neural networks by enabling decentralized collaboration while safeguarding sensitive data and improving model performance.
This paper introduces an innovative solution named Estimated Mean Aggregation (EMA) that not only addresses these challenges but also provides a fundamental reference point as a $mathsfbaseline$ for advanced aggregation techniques in FL systems.
- Score: 5.5099914877576985
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) has revolutionized how we train deep neural networks
by enabling decentralized collaboration while safeguarding sensitive data and
improving model performance. However, FL faces two crucial challenges: the
diverse nature of data held by individual clients and the vulnerability of the
FL system to security breaches. This paper introduces an innovative solution
named Estimated Mean Aggregation (EMA) that not only addresses these challenges
but also provides a fundamental reference point as a $\mathsf{baseline}$ for
advanced aggregation techniques in FL systems. EMA's significance lies in its
dual role: enhancing model security by effectively handling malicious outliers
through trimmed means and uncovering data heterogeneity to ensure that trained
models are adaptable across various client datasets. Through a wealth of
experiments, EMA consistently demonstrates high accuracy and area under the
curve (AUC) compared to alternative methods, establishing itself as a robust
baseline for evaluating the effectiveness and security of FL aggregation
methods. EMA's contributions thus offer a crucial step forward in advancing the
efficiency, security, and versatility of decentralized deep learning in the
context of FL.
Related papers
- Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
Mobile devices, including smartphones and laptops, generate decentralized and heterogeneous data.
Federated Learning (FL) offers a promising alternative by enabling collaborative training of a global model across decentralized devices without data sharing.
This paper focuses on data-dependent heterogeneity in FL and proposes a novel approach leveraging mean latent representations extracted from locally trained models.
arXiv Detail & Related papers (2024-11-10T04:03:09Z) - StatAvg: Mitigating Data Heterogeneity in Federated Learning for Intrusion Detection Systems [22.259297167311964]
Federated learning (FL) is a decentralized learning technique that enables devices to collaboratively build a shared Machine Leaning (ML) or Deep Learning (DL) model without revealing their raw data to a third party.
Due to its privacy-preserving nature, FL has sparked widespread attention for building Intrusion Detection Systems (IDS) within the realm of cybersecurity.
We propose an effective method called Statistical Averaging (StatAvg) to alleviate non-independently and identically (non-iid) distributed features across local clients' data in FL.
arXiv Detail & Related papers (2024-05-20T14:41:59Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Enhancing Data Provenance and Model Transparency in Federated Learning
Systems -- A Database Approach [1.2180726230978978]
Federated Learning (FL) presents a promising paradigm for training machine learning models across decentralized edge devices.
Ensuring the integrity and traceability of data across these distributed environments remains a critical challenge.
We propose one of the first approaches to enhance data provenance and model transparency in FL systems.
arXiv Detail & Related papers (2024-03-03T09:08:41Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Reinforcement Learning as a Catalyst for Robust and Fair Federated
Learning: Deciphering the Dynamics of Client Contributions [6.318638597489423]
Reinforcement Federated Learning (RFL) is a novel framework that leverages deep reinforcement learning to adaptively optimize client contribution during aggregation.
In terms of robustness, RFL outperforms state-of-the-art methods, while maintaining comparable levels of fairness.
arXiv Detail & Related papers (2024-02-08T10:22:12Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.