論文の概要: GraphSeg: Segmented 3D Representations via Graph Edge Addition and Contraction
- arxiv url: http://arxiv.org/abs/2504.03129v1
- Date: Fri, 04 Apr 2025 02:42:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:48.232722
- Title: GraphSeg: Segmented 3D Representations via Graph Edge Addition and Contraction
- Title(参考訳): GraphSeg: Graph Edgeの追加と契約による3D表現のセグメンテーション
- Authors: Haozhan Tang, Tianyi Zhang, Oliver Kroemer, Matthew Johnson-Roberson, Weiming Zhi,
- Abstract要約: 2次元画像のスパース集合から一貫した3次元オブジェクトセグメンテーションを生成するためのフレームワークであるGraphSegを提案する。
また,GraphSegは,従来の手法よりも画像が著しく少なく,精度も高く,頑健なセグメンテーションを実現していることを示す。
- 参考スコア(独自算出の注目度): 23.79427101656399
- License:
- Abstract: Robots operating in unstructured environments often require accurate and consistent object-level representations. This typically requires segmenting individual objects from the robot's surroundings. While recent large models such as Segment Anything (SAM) offer strong performance in 2D image segmentation. These advances do not translate directly to performance in the physical 3D world, where they often over-segment objects and fail to produce consistent mask correspondences across views. In this paper, we present GraphSeg, a framework for generating consistent 3D object segmentations from a sparse set of 2D images of the environment without any depth information. GraphSeg adds edges to graphs and constructs dual correspondence graphs: one from 2D pixel-level similarities and one from inferred 3D structure. We formulate segmentation as a problem of edge addition, then subsequent graph contraction, which merges multiple 2D masks into unified object-level segmentations. We can then leverage \emph{3D foundation models} to produce segmented 3D representations. GraphSeg achieves robust segmentation with significantly fewer images and greater accuracy than prior methods. We demonstrate state-of-the-art performance on tabletop scenes and show that GraphSeg enables improved performance on downstream robotic manipulation tasks. Code available at https://github.com/tomtang502/graphseg.git.
- Abstract(参考訳): 構造化されていない環境で動くロボットは、しばしば正確で一貫したオブジェクトレベルの表現を必要とする。
これは通常、ロボットの周囲から個々の物体を分割する必要がある。
最近のSegment Anything (SAM)のような大型モデルは、2D画像のセグメンテーションにおいて強力なパフォーマンスを提供する。
これらの進歩は、しばしばオーバーセグメントオブジェクトがビュー全体にわたって一貫したマスク対応を生成できない物理的3D世界のパフォーマンスに直接変換しない。
本稿では,環境のスパースな2次元画像から一貫した3次元オブジェクトセグメンテーションを生成するためのフレームワークであるGraphSegについて述べる。
GraphSegはグラフにエッジを追加し、二重対応グラフを構築する。
エッジ付加の問題としてセグメンテーションを定式化し、その後、複数の2次元マスクを統一されたオブジェクトレベルセグメンテーションにマージするグラフ縮約を行う。
次に \emph{3D foundation model} を利用してセグメント化された3D表現を生成する。
GraphSegは、画像が大幅に少なく、以前の方法よりも精度が高い堅牢なセグメンテーションを実現する。
テーブルトップのシーンで最先端のパフォーマンスを実演し、下流ロボット操作タスクにおけるパフォーマンス向上をGraphSegが実現していることを示す。
https://github.com/tomtang502/graphseg.git.comで公開されている。
関連論文リスト
- 3D Part Segmentation via Geometric Aggregation of 2D Visual Features [57.20161517451834]
監督された3D部分分割モデルは、固定されたオブジェクトと部品のセットに合わせて調整されており、それらの転送可能性は、オープンセットの現実世界のシナリオに制限される。
近年、視覚言語モデル(VLM)を多視点レンダリングとテキストプロンプトを用いてオブジェクト部品の識別に活用する研究が進められている。
これらの制約に対処するために,視覚概念から抽出した意味論と3次元幾何学をブレンドし,対象部品を効果的に同定するCOPSを提案する。
論文 参考訳(メタデータ) (2024-12-05T15:27:58Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
我々は3次元シーンを表すニューラル・レージアンス・フィールド(NeRF)内の新しい特徴場を学習する。
本手法は、ビュー一貫性の多粒性2Dセグメンテーションを入力とし、3D一貫性のセグメンテーションの階層構造を出力として生成する。
提案手法と,多視点画像と多粒性セグメンテーションを用いた合成データセットのベースラインの評価を行い,精度と視点整合性を向上したことを示す。
論文 参考訳(メタデータ) (2024-05-30T04:14:58Z) - SAM-guided Graph Cut for 3D Instance Segmentation [60.75119991853605]
本稿では,3次元画像情報と多視点画像情報の同時利用による3次元インスタンス分割の課題に対処する。
本稿では,3次元インスタンスセグメンテーションのための2次元セグメンテーションモデルを効果的に活用する新しい3D-to-2Dクエリフレームワークを提案する。
本手法は,ロバストなセグメンテーション性能を実現し,異なるタイプのシーンにまたがる一般化を実現する。
論文 参考訳(メタデータ) (2023-12-13T18:59:58Z) - Segment Any 3D Gaussians [85.93694310363325]
本稿では, 3次元ガウススプレイティング(3D-GS)に基づく高効率3Dプロンプト可能なセグメンテーション法であるSAGAについて述べる。
入力として2D視覚的プロンプトが与えられたとき、SAGAは対応する3Dターゲットを4ミリ秒以内に3Dガウスで表現できる。
我々は,SAGAが最先端の手法に匹敵する品質で,リアルタイムな多粒度セグメンテーションを実現することを示す。
論文 参考訳(メタデータ) (2023-12-01T17:15:24Z) - A One Stop 3D Target Reconstruction and multilevel Segmentation Method [0.0]
オープンソースのワンストップ3Dターゲット再構成とマルチレベルセグメンテーションフレームワーク(OSTRA)を提案する。
OSTRAは2D画像上でセグメンテーションを行い、画像シーケンス内のセグメンテーションラベルで複数のインスタンスを追跡し、ラベル付き3Dオブジェクトまたは複数のパーツをMulti-View Stereo(MVS)またはRGBDベースの3D再構成手法で再構成する。
本手法は,複雑なシーンにおいて,リッチなマルチスケールセグメンテーション情報に埋め込まれた3次元ターゲットを再構築するための新たな道を開く。
論文 参考訳(メタデータ) (2023-08-14T07:12:31Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
そこで本研究では,2次元領域における自己教師型手法を,微細な3次元形状分割作業に活用することを提案する。
複数のビューから3次元形状を描画し、コントラスト学習フレームワーク内に密接な対応学習タスクを設置する。
その結果、学習された2次元表現はビュー不変であり、幾何学的に一貫性がある。
論文 参考訳(メタデータ) (2022-08-18T00:48:15Z) - SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D
Sequences [76.28527350263012]
rgb-dフレームのシーケンスを与えられた3次元環境から意味的シーングラフを漸進的に構築する手法を提案する。
我々は、グラフニューラルネットワークを用いて、プリミティブシーンコンポーネントからpointnet機能を集約する。
提案手法は,35hzで動作する他の3dセマンティクスおよびパンオプティカルセグメンテーション法と同等の精度で,高いマージンで3dシーングラフ予測手法を上回る。
論文 参考訳(メタデータ) (2021-03-27T13:00:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。