論文の概要: Real-Time Roadway Obstacle Detection for Electric Scooters Using Deep Learning and Multi-Sensor Fusion
- arxiv url: http://arxiv.org/abs/2504.03171v1
- Date: Fri, 04 Apr 2025 05:01:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:48:57.373207
- Title: Real-Time Roadway Obstacle Detection for Electric Scooters Using Deep Learning and Multi-Sensor Fusion
- Title(参考訳): 深層学習とマルチセンサフュージョンを用いた電動スクータのリアルタイム道路障害物検出
- Authors: Zeyang Zheng, Arman Hosseini, Dong Chen, Omid Shoghli, Arsalan Heydarian,
- Abstract要約: 本研究は,RGBカメラと深度カメラを統合した電子スクータのための新しい地中障害物検出システムを提案する。
RGBカメラ、ディープカメラ、IMUを含むすべてのセンサーは、Intel RealSense Camera D435iに統合されている。
YOLOを用いた深層学習モデルでは,道路の危険を検知し,奥行きデータを用いて障害物の近接を推定する。
- 参考スコア(独自算出の注目度): 9.151970249687324
- License:
- Abstract: The increasing adoption of electric scooters (e-scooters) in urban areas has coincided with a rise in traffic accidents and injuries, largely due to their small wheels, lack of suspension, and sensitivity to uneven surfaces. While deep learning-based object detection has been widely used to improve automobile safety, its application for e-scooter obstacle detection remains unexplored. This study introduces a novel ground obstacle detection system for e-scooters, integrating an RGB camera, and a depth camera to enhance real-time road hazard detection. Additionally, the Inertial Measurement Unit (IMU) measures linear vertical acceleration to identify surface vibrations, guiding the selection of six obstacle categories: tree branches, manhole covers, potholes, pine cones, non-directional cracks, and truncated domes. All sensors, including the RGB camera, depth camera, and IMU, are integrated within the Intel RealSense Camera D435i. A deep learning model powered by YOLO detects road hazards and utilizes depth data to estimate obstacle proximity. Evaluated on the seven hours of naturalistic riding dataset, the system achieves a high mean average precision (mAP) of 0.827 and demonstrates excellent real-time performance. This approach provides an effective solution to enhance e-scooter safety through advanced computer vision and data fusion. The dataset is accessible at https://zenodo.org/records/14583718, and the project code is hosted on https://github.com/Zeyang-Zheng/Real-Time-Roadway-Obstacle-Detection-for-Electric-Scooters.
- Abstract(参考訳): 都市部での電動スクーター(電動スクーター)の採用の増加は、交通事故や怪我の増加と一致している。
深層学習に基づく物体検出は自動車の安全性向上に広く利用されているが,e-Scooterの障害物検出への応用はいまだ検討されていない。
本研究は,RGBカメラと深度カメラを統合し,リアルタイム道路危険検知を向上する新しい地上障害物検出システムを提案する。
さらに、慣性測定ユニット(IMU)は、直線的な垂直加速度を測定して表面振動を識別し、木の枝、マンホールカバー、ポットホール、松の円錐、非方向性亀裂、切り捨てられたドームの6つの障害カテゴリの選択を導く。
RGBカメラ、ディープカメラ、IMUを含むすべてのセンサーは、Intel RealSense Camera D435iに統合されている。
YOLOを用いた深層学習モデルでは,道路の危険を検知し,奥行きデータを用いて障害物の近接を推定する。
自然主義的なライディングデータセットの7時間に基づいて、システムは0.827の平均的な平均精度(mAP)を達成し、優れたリアルタイム性能を示す。
このアプローチは、先進的なコンピュータビジョンとデータ融合を通じて、e-scooterの安全性を高める効果的なソリューションを提供する。
データセットはhttps://zenodo.org/records/14583718でアクセスでき、プロジェクトのコードはhttps://github.com/Zeyang-Zheng/Real-Time-Roadway-Obstacle-Detection-for-Electric-Scootersでホストされている。
関連論文リスト
- An Optimized YOLOv5 Based Approach For Real-time Vehicle Detection At Road Intersections Using Fisheye Cameras [0.13092499936969584]
リアルタイム車両検出は都市交通監視の課題である。
魚眼カメラは、広い面積をカバーし、ジャンクションでの360度ビューを提供するために、リアルタイム車両検出の目的に広く利用されている。
車両や街路灯からの光輝き、影、非線形歪み、車両のスケーリング問題、小型車両の適切な位置決めといった課題を克服するため、改良型YOLOv5物体検出方式を提案する。
論文 参考訳(メタデータ) (2025-02-06T23:42:05Z) - Application of 2D Homography for High Resolution Traffic Data Collection
using CCTV Cameras [9.946460710450319]
本研究では,CCTVカメラから高精細なトラフィックデータを抽出するための3段階のビデオ分析フレームワークを実装した。
このフレームワークの主要な構成要素は、オブジェクト認識、視点変換、車両軌道再構成である。
その結果, カメラ推定値間の速度偏差は10%以下で, 方向トラフィック数では+/-4.5%の誤差率を示した。
論文 参考訳(メタデータ) (2024-01-14T07:33:14Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - DensePose From WiFi [86.61881052177228]
WiFi信号の位相と振幅を24のヒト領域内の紫外線座標にマッピングするディープニューラルネットワークを開発した。
本モデルでは,複数の被験者の密集したポーズを,画像に基づくアプローチと同等の性能で推定することができる。
論文 参考訳(メタデータ) (2022-12-31T16:48:43Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
本稿では,自動車のRADARセンサを用いて動的障害物や乾燥可能な自由空間を検出するディープニューラルネットワーク(DNN)を提案する。
ネットワークは組み込みGPU上でリアルタイムよりも高速に動作し、地理的領域にわたって優れた一般化を示す。
論文 参考訳(メタデータ) (2022-09-29T01:30:34Z) - Threat Detection In Self-Driving Vehicles Using Computer Vision [0.0]
ダッシュカムビデオを用いた自動運転車の脅威検出機構を提案する。
オブジェクトを識別するためのYOLO,高度な車線検出アルゴリズム,カメラからの距離を測定するマルチレグレッションモデルという,4つの主要なコンポーネントがある。
提案した脅威検出モデル(TDM)の最終的な精度は82.65%である。
論文 参考訳(メタデータ) (2022-09-06T12:01:07Z) - Smartphone-based Hard-braking Event Detection at Scale for Road Safety
Services [6.451490979743455]
道路事故は世界第6位の障害調整生命年(DALY)の原因となっている。
本稿では,スマートフォンセンサから収集したキネマティクスデータを用いて,ハードブレーキイベントを検出するスケーラブルなアプローチを提案する。
われわれはTransformerをベースとした機械学習モデルをトレーニングし、Google Mapsでナビゲートしながらスマートフォンや車両のセンサーから、スマートフォンと車両のセンサーを同時に読み取ることで、ハードブレーキイベントの検出を可能にした。
論文 参考訳(メタデータ) (2022-02-04T01:30:32Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
ドローンによる車両検出は、空中画像中の車両の位置とカテゴリーを見つけることを目的としている。
我々はDroneVehicleと呼ばれる大規模ドローンベースのRGB赤外線車両検出データセットを構築した。
私たちのDroneVehicleは28,439RGBの赤外線画像を収集し、都市道路、住宅地、駐車場、その他のシナリオを昼から夜までカバーしています。
論文 参考訳(メタデータ) (2020-03-05T05:29:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。