論文の概要: Learning Lie Group Generators from Trajectories
- arxiv url: http://arxiv.org/abs/2504.03220v1
- Date: Fri, 04 Apr 2025 07:08:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:47:40.573324
- Title: Learning Lie Group Generators from Trajectories
- Title(参考訳): 軌道からのリー群発電機の学習
- Authors: Lifan Hu,
- Abstract要約: 本研究は, 離散軌道からの行列リー群における生成元回復の逆問題について検討する。
フィードフォワードニューラルネットワークは、このマッピングを複数のグループで学習するように訓練されている。
清潔でノイズの多い条件下では、強い経験的精度を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This work investigates the inverse problem of generator recovery in matrix Lie groups from discretized trajectories. Let $G$ be a real matrix Lie group and $\mathfrak{g} = \text{Lie}(G)$ its corresponding Lie algebra. A smooth trajectory $\gamma($t$)$ generated by a fixed Lie algebra element $\xi \in \mathfrak{g}$ follows the exponential flow $\gamma($t$) = g_0 \cdot \exp(t \xi)$. The central task addressed in this work is the reconstruction of such a latent generator $\xi$ from a discretized sequence of poses $ \{g_0, g_1, \dots, g_T\} \subset G$, sampled at uniform time intervals. This problem is formulated as a data-driven regression from normalized sequences of discrete Lie algebra increments $\log\left(g_{t}^{-1} g_{t+1}\right)$ to the constant generator $\xi \in \mathfrak{g}$. A feedforward neural network is trained to learn this mapping across several groups, including $\text{SE(2)}, \text{SE(3)}, \text{SO(3)}, and \text{SL(2,$\mathbb{R})$}$. It demonstrates strong empirical accuracy under both clean and noisy conditions, which validates the viability of data-driven recovery of Lie group generators using shallow neural architectures. This is Lie-RL GitHub Repo https://github.com/Anormalm/LieRL-on-Trajectories. Feel free to make suggestions and collaborations!
- Abstract(参考訳): 本研究は, 離散軌跡からの行列リー群における生成元回復の逆問題について検討する。
G$ を実行列リー群とし、$\mathfrak{g} = \text{Lie}(G)$ を対応するリー代数とする。
固定リー代数元 $\xi \in \mathfrak{g}$ によって生成される滑らかな軌跡 $\gamma($t$)$ は指数フロー $\gamma($t$) = g_0 \cdot \exp(t \xi)$ に従う。
この作業で対処される中心的なタスクは、一様時間間隔でサンプリングされた、ポーズの離散化された列${g_0, g_1, \dots, g_T\} \subset G$から、そのような潜伏生成子$\xi$を再構成することである。
この問題は、離散リー代数の正規化列の増分 $\log\left(g_{t}^{-1} g_{t+1}\right)$ から定数生成元 $\xi \in \mathfrak{g}$ へのデータ駆動回帰として定式化される。
フィードフォワードニューラルネットワークは、$\text{SE(2)}, \text{SE(3)}, \text{SO(3)}, \text{SL(2,$\mathbb{R})$}$など、いくつかのグループでこのマッピングを学ぶように訓練される。
クリーンかつノイズの多い条件下では、強い経験的精度を示し、浅いニューラルネットワークを用いて、Lieグループジェネレータのデータ駆動リカバリの実現可能性を検証する。
これはLie-RL GitHub Repo https://github.com/Anormalm/LieRL-on-Trajectoriesである。
提案やコラボレーションは自由に行えます!
関連論文リスト
- Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models [37.42736399673992]
シングルインデックスモデル (SIM) は $sigma(mathbfwast cdot mathbfx)$ という形式の関数であり、$sigma: mathbbR to mathbbR$ は既知のリンク関数であり、$mathbfwast$ は隠れ単位ベクトルである。
適切な学習者が$L2$-error of $O(mathrmOPT)+epsilon$。
論文 参考訳(メタデータ) (2024-11-08T17:10:38Z) - Iterative thresholding for non-linear learning in the strong $\varepsilon$-contamination model [3.309767076331365]
閾値降下を用いた単一ニューロンモデル学習のための近似境界を導出する。
線形回帰問題も研究し、$sigma(mathbfx) = mathbfx$ となる。
論文 参考訳(メタデータ) (2024-09-05T16:59:56Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
単一インデックス対象関数 $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ の勾配勾配勾配学習問題について検討する。
SGDに基づくアルゴリズムにより最適化された2層ニューラルネットワークは、情報指数に支配されない複雑さで$f_*$を学習する。
論文 参考訳(メタデータ) (2024-06-03T17:56:58Z) - Provably learning a multi-head attention layer [55.2904547651831]
マルチヘッドアテンション層は、従来のフィードフォワードモデルとは分離したトランスフォーマーアーキテクチャの重要な構成要素の1つである。
本研究では,ランダムな例から多面的注意層を実証的に学習する研究を開始する。
最悪の場合、$m$に対する指数的依存は避けられないことを示す。
論文 参考訳(メタデータ) (2024-02-06T15:39:09Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
非線形測定では、ほとんどの先行結果は一様ではない、すなわち、すべての$mathbfx*$に対してではなく、固定された$mathbfx*$に対して高い確率で保持される。
本フレームワークはGCSに1ビット/一様量子化観測と単一インデックスモデルを標準例として適用する。
また、指標集合が計量エントロピーが低い製品プロセスに対して、より厳密な境界を生み出す濃度不等式も開発する。
論文 参考訳(メタデータ) (2023-09-25T17:54:19Z) - Distribution-Independent Regression for Generalized Linear Models with
Oblivious Corruptions [49.69852011882769]
一般化線形モデル (GLMs) の重畳雑音の存在下での回帰問題に対する最初のアルゴリズムを示す。
本稿では,この問題に最も一般的な分布非依存設定で対処するアルゴリズムを提案する。
これは、サンプルの半分以上を任意に破損させる難聴ノイズを持つGLMレグレッションに対する最初の新しいアルゴリズムによる結果である。
論文 参考訳(メタデータ) (2023-09-20T21:41:59Z) - An Over-parameterized Exponential Regression [18.57735939471469]
LLM(Large Language Models)の分野での最近の発展は、指数的アクティベーション関数の使用への関心を喚起している。
ニューラル関数 $F: mathbbRd times m times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRdd
論文 参考訳(メタデータ) (2023-03-29T07:29:07Z) - Solving Regularized Exp, Cosh and Sinh Regression Problems [40.47799094316649]
注意計算はTransformer、GPT-4、ChatGPTといった大規模言語モデルの基本的なタスクである。
素直な方法はニュートンの方法を使うことである。
論文 参考訳(メタデータ) (2023-03-28T04:26:51Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。