論文の概要: Electromyography-Based Gesture Recognition: Hierarchical Feature Extraction for Enhanced Spatial-Temporal Dynamics
- arxiv url: http://arxiv.org/abs/2504.03221v1
- Date: Fri, 04 Apr 2025 07:11:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:48:14.356969
- Title: Electromyography-Based Gesture Recognition: Hierarchical Feature Extraction for Enhanced Spatial-Temporal Dynamics
- Title(参考訳): 筋電図に基づくジェスチャー認識:空間時間ダイナミクスの強化のための階層的特徴抽出
- Authors: Jungpil Shin, Abu Saleh Musa Miah, Sota Konnai, Shu Hoshitaka, Pankoo Kim,
- Abstract要約: 本稿では, 時間的時間的特徴抽出手法として, 軽量な圧縮励起深層学習手法を提案する。
提案したモデルは、Ninapro DB2、DB4、DB5データセットでそれぞれ96.41%、92.40%、93.34%の精度でテストされた。
- 参考スコア(独自算出の注目度): 0.7083699704958353
- License:
- Abstract: Hand gesture recognition using multichannel surface electromyography (sEMG) is challenging due to unstable predictions and inefficient time-varying feature enhancement. To overcome the lack of signal based time-varying feature problems, we propose a lightweight squeeze-excitation deep learning-based multi stream spatial temporal dynamics time-varying feature extraction approach to build an effective sEMG-based hand gesture recognition system. Each branch of the proposed model was designed to extract hierarchical features, capturing both global and detailed spatial-temporal relationships to ensure feature effectiveness. The first branch, utilizing a Bidirectional-TCN (Bi-TCN), focuses on capturing long-term temporal dependencies by modelling past and future temporal contexts, providing a holistic view of gesture dynamics. The second branch, incorporating a 1D Convolutional layer, separable CNN, and Squeeze-and-Excitation (SE) block, efficiently extracts spatial-temporal features while emphasizing critical feature channels, enhancing feature relevance. The third branch, combining a Temporal Convolutional Network (TCN) and Bidirectional LSTM (BiLSTM), captures bidirectional temporal relationships and time-varying patterns. Outputs from all branches are fused using concatenation to capture subtle variations in the data and then refined with a channel attention module, selectively focusing on the most informative features while improving computational efficiency. The proposed model was tested on the Ninapro DB2, DB4, and DB5 datasets, achieving accuracy rates of 96.41%, 92.40%, and 93.34%, respectively. These results demonstrate the capability of the system to handle complex sEMG dynamics, offering advancements in prosthetic limb control and human-machine interface technologies with significant implications for assistive technologies.
- Abstract(参考訳): 多チャンネル表面筋電図(sEMG)を用いた手のジェスチャー認識は、不安定な予測と非効率な時間変化特徴強調のために困難である。
信号に基づく時間変化特徴の欠如を克服するため,SEMGを用いた手動ジェスチャー認識システムを構築するために,信号に基づく時間変化特徴抽出手法を提案する。
提案モデルの各枝は階層的特徴を抽出し,大域的および詳細な時空間関係を抽出し,特徴の有効性を保証する。
第1のブランチは、双方向TCN(Bidirectional-TCN)を利用して、過去と将来の時間的コンテキストをモデル化することで、長期の時間的依存関係をキャプチャし、ジェスチャダイナミクスの全体像を提供する。
第2のブランチは、1D畳み込み層、分離可能なCNN、およびSqueeze-and-Excitation(SE)ブロックを組み込んだもので、重要な特徴チャネルを強調しながら空間的特徴を効率的に抽出し、特徴関連性を高める。
第3のブランチは、TCN(Temporal Convolutional Network)とBidirectional LSTM(BiLSTM)を組み合わせて、双方向の時間的関係と時間的パターンをキャプチャする。
すべてのブランチからの出力は結合を使ってデータの微妙な変動をキャプチャし、チャネルアテンションモジュールで洗練され、計算効率を改善しながら最も情報性の高い特徴に選択的に集中する。
提案したモデルは、Ninapro DB2、DB4、DB5データセットでそれぞれ96.41%、92.40%、93.34%の精度でテストされた。
これらの結果から, 複雑なSEMG力学の処理能力が示され, 義肢制御の進歩と, 補助技術に重要な意味を持つヒューマン・マシン・インタフェース技術が提供される。
関連論文リスト
- Multimodal Attention-Enhanced Feature Fusion-based Weekly Supervised Anomaly Violence Detection [1.9223495770071632]
このシステムは、RGBビデオ、光フロー、オーディオ信号の3つの特徴ストリームを使用し、それぞれのストリームが相補的な空間的特徴と時間的特徴を抽出する。
このシステムは3つのデータセットの異常検出精度とロバスト性を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-17T14:17:52Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
交通予測は交通科学と人工知能における最も基本的な問題の一つである。
既存の手法では、長期的相関と短期的相関を同時にモデル化することはできない。
本稿では,GCRN(Graph Convolutional Recurrent Module)とグローバルアテンションモジュールからなる新しい時空間ニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-25T03:37:00Z) - Skeleton-based Action Recognition via Temporal-Channel Aggregation [5.620303498964992]
空間的・時間的トポロジを学習するために,TCA-CN(Temporal-Channel Aggregation Graph Conal Networks)を提案する。
さらに,マルチスケールの骨格時間モデリングを抽出し,注意機構を備えた事前骨格知識と融合する。
論文 参考訳(メタデータ) (2022-05-31T16:28:30Z) - Discrete-time Temporal Network Embedding via Implicit Hierarchical
Learning in Hyperbolic Space [43.280123606888395]
双曲幾何学の指数的能力と階層的認識を生かした双曲時間グラフネットワーク(HTGN)を提案する。
HTGNは、時間グラフを双曲空間にマッピングし、双曲グラフニューラルネットワークと双曲ゲートリカレントニューラルネットワークを組み込む。
複数の実世界のデータセットに対する実験結果は、時間グラフ埋め込みにおけるHTGNの優位性を示している。
論文 参考訳(メタデータ) (2021-07-08T11:24:59Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - A Two-stream Neural Network for Pose-based Hand Gesture Recognition [23.50938160992517]
近年,ポーズに基づくジェスチャー認識が広く研究されている。
本稿では,グラフ畳み込みネットワーク(sagcn)を1ストリームとする2ストリームニューラルネットワークを提案する。
残差接続強化Bi-IndRNNは、時間モデリングのための双方向処理機能を備えたIndRNNを拡張する。
論文 参考訳(メタデータ) (2021-01-22T03:22:26Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
複数の解像度で抽出できる新しい時間・時間的畳み込みブロックを提案する。
提案するブロックは軽量で,任意の3D-CNNアーキテクチャに統合可能である。
論文 参考訳(メタデータ) (2020-11-08T10:40:26Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for
Gesture Recognition [89.0152015268929]
RGB-Dジェスチャ認識のための最初のニューラルアーキテクチャサーチ(NAS)手法を提案する。
提案手法は,1)3次元中央差分畳畳み込み(3D-CDC)ファミリーによる時間的表現の強化,および多モードレート分岐と横方向接続のための最適化されたバックボーンを含む。
結果として得られたマルチレートネットワークは、RGBと深さ変調と時間力学の関係を理解するための新しい視点を提供する。
論文 参考訳(メタデータ) (2020-08-21T10:45:09Z) - Learn to cycle: Time-consistent feature discovery for action recognition [83.43682368129072]
時間的変動を一般化することは、ビデオにおける効果的な行動認識の前提条件である。
Squeeze Re Temporal Gates (SRTG) を導入する。
SRTPGブロックを使用する場合,GFLOの数は最小限に抑えられ,一貫した改善が見られた。
論文 参考訳(メタデータ) (2020-06-15T09:36:28Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
本稿では,マルチスケールグラフ畳み込みと,G3Dという空間時間グラフ畳み込み演算子を結合する簡単な方法を提案する。
これらの提案を結合することにより,MS-G3Dという強力な特徴抽出器を開発し,そのモデルが3つの大規模データセット上で従来の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-03-31T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。