論文の概要: Discrete-time Temporal Network Embedding via Implicit Hierarchical
Learning in Hyperbolic Space
- arxiv url: http://arxiv.org/abs/2107.03767v1
- Date: Thu, 8 Jul 2021 11:24:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 17:27:27.355831
- Title: Discrete-time Temporal Network Embedding via Implicit Hierarchical
Learning in Hyperbolic Space
- Title(参考訳): 双曲空間における暗黙的階層学習による離散時間時間ネットワーク埋め込み
- Authors: Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, Irwin King
- Abstract要約: 双曲幾何学の指数的能力と階層的認識を生かした双曲時間グラフネットワーク(HTGN)を提案する。
HTGNは、時間グラフを双曲空間にマッピングし、双曲グラフニューラルネットワークと双曲ゲートリカレントニューラルネットワークを組み込む。
複数の実世界のデータセットに対する実験結果は、時間グラフ埋め込みにおけるHTGNの優位性を示している。
- 参考スコア(独自算出の注目度): 43.280123606888395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representation learning over temporal networks has drawn considerable
attention in recent years. Efforts are mainly focused on modeling structural
dependencies and temporal evolving regularities in Euclidean space which,
however, underestimates the inherent complex and hierarchical properties in
many real-world temporal networks, leading to sub-optimal embeddings. To
explore these properties of a complex temporal network, we propose a hyperbolic
temporal graph network (HTGN) that fully takes advantage of the exponential
capacity and hierarchical awareness of hyperbolic geometry. More specially,
HTGN maps the temporal graph into hyperbolic space, and incorporates hyperbolic
graph neural network and hyperbolic gated recurrent neural network, to capture
the evolving behaviors and implicitly preserve hierarchical information
simultaneously. Furthermore, in the hyperbolic space, we propose two important
modules that enable HTGN to successfully model temporal networks: (1)
hyperbolic temporal contextual self-attention (HTA) module to attend to
historical states and (2) hyperbolic temporal consistency (HTC) module to
ensure stability and generalization. Experimental results on multiple
real-world datasets demonstrate the superiority of HTGN for temporal graph
embedding, as it consistently outperforms competing methods by significant
margins in various temporal link prediction tasks. Specifically, HTGN achieves
AUC improvement up to 9.98% for link prediction and 11.4% for new link
prediction. Moreover, the ablation study further validates the representational
ability of hyperbolic geometry and the effectiveness of the proposed HTA and
HTC modules.
- Abstract(参考訳): 近年,時間的ネットワークによる表現学習が注目されている。
主にユークリッド空間における構造的依存関係と時間的進化規則性のモデル化に焦点が当てられているが、多くの実世界の時間ネットワークにおいて本質的に複雑で階層的な性質を過小評価し、準最適埋め込みをもたらす。
複合時間ネットワークのこれらの特性を探索するため,双曲型時間グラフネットワーク(HTGN)を提案し,双曲型幾何学の指数的能力と階層的認識をフル活用する。
より具体的には、HTGNは時間グラフを双曲型空間にマッピングし、双曲型グラフニューラルネットワークと双曲型ゲート型リカレントニューラルネットワークを組み込んで、進化する振る舞いを捉え、階層的な情報を同時に暗黙的に保存する。
さらに,HTGNが時間的ネットワークをモデル化できる重要なモジュールを2つ提案する。(1) 時間的時間的文脈自己アテンション (HTA) モジュールは歴史的状態に対応し,(2) 時間的安定性と一般化を確保するための双曲的時間的一貫性 (HTC) モジュールである。
複数の実世界のデータセットに対する実験結果は、時間的グラフ埋め込みにおけるHTGNの優位性を示し、様々な時間的リンク予測タスクにおいて競合する手法よりも一貫して優れていた。
具体的には、HTGNはリンク予測で9.98%、新しいリンク予測で11.4%のAUC改善を実現している。
さらに、アブレーション研究は、双曲幾何学の表現能力と提案したHTAおよびHTCモジュールの有効性をさらに検証する。
関連論文リスト
- SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - CTRL: Continuous-Time Representation Learning on Temporal Heterogeneous Information Network [32.42051167404171]
時間HINを用いた連続時間表現学習モデルを提案する。
我々は、高次ネットワーク構造の進化を捉えるために、将来の事象(サブグラフ)予測タスクでモデルを訓練する。
その結果,本モデルは性能を著しく向上し,様々な最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-05-11T03:39:22Z) - HGWaveNet: A Hyperbolic Graph Neural Network for Temporal Link
Prediction [9.110162634132827]
本稿では,時間的リンク予測のために,双曲空間とデータ分布間の適合性をフル活用した新しい双曲グラフニューラルネットワークHGWaveNetを提案する。
具体的には,空間的位相構造と時間的進化情報を別々に学習するための2つの重要なモジュールを設計する。
その結果,SOTA法による時間リンク予測では,AUCが6.67%向上した。
論文 参考訳(メタデータ) (2023-04-14T07:07:00Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
交通予測は交通科学と人工知能における最も基本的な問題の一つである。
既存の手法では、長期的相関と短期的相関を同時にモデル化することはできない。
本稿では,GCRN(Graph Convolutional Recurrent Module)とグローバルアテンションモジュールからなる新しい時空間ニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-25T03:37:00Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
非効率な時空間継手線形注意(SSTLA)と呼ばれる交通予測のための新しいディープラーニングモデルを提案する。
SSTLAは、全時間ノード間のグローバル依存を効率的に捉えるために、ジョイントグラフに線形注意を適用する。
実世界の2つの交通データセットであるイングランドとテンポラル7の実験は、我々のSTJLAが最先端のベースラインよりも9.83%と3.08%の精度でMAE測定を達成できることを示した。
論文 参考訳(メタデータ) (2021-12-04T06:39:18Z) - Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting [22.421667339552467]
時空間予測は幅広い応用において大きな注目を集めており、交通流予測は標準的で典型的な例である。
既存の研究は通常、浅いグラフ畳み込みネットワーク(GNN)と時間的抽出モジュールを使用して、それぞれ空間的および時間的依存関係をモデル化する。
テンソル型常微分方程式(ODE)を用いて時空間ダイナミクスを捉える時空間グラフ正規微分方程式ネットワーク(STGODE)を提案する。
我々は,複数の実世界の交通データセット上でモデルを評価し,最先端のベースライン上で優れた性能を実現する。
論文 参考訳(メタデータ) (2021-06-24T11:48:45Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
グラフニューラルネットワークは、十分な高品質のトレーニングデータがないために、現実のシナリオでは実用的ではないかもしれない。
我々は時間的データを解析するための数学的に設計された新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2020-12-06T19:49:55Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。