論文の概要: Robot Localization Using a Learned Keypoint Detector and Descriptor with a Floor Camera and a Feature Rich Industrial Floor
- arxiv url: http://arxiv.org/abs/2504.03249v1
- Date: Fri, 04 Apr 2025 08:00:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:47:28.771457
- Title: Robot Localization Using a Learned Keypoint Detector and Descriptor with a Floor Camera and a Feature Rich Industrial Floor
- Title(参考訳): 学習したキーポイント検出器とフロアカメラと特徴豊富な産業フロアを用いた記述器を用いたロボットのローカライゼーション
- Authors: Piet Brömmel, Dominik Brämer, Oliver Urbann, Diana Kleingarn,
- Abstract要約: 移動ロボットのローカライゼーションは 環境からの良質な特徴の可用性に依存します
可読マーカーを持たない産業用フロアから十分な特徴を抽出するディープニューラルネットワーク。
検出器と記述子の組み合わせによるフレームワークは、同等のアプローチを上回ります。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The localization of moving robots depends on the availability of good features from the environment. Sensor systems like Lidar are popular, but unique features can also be extracted from images of the ground. This work presents the Keypoint Localization Framework (KOALA), which utilizes deep neural networks that extract sufficient features from an industrial floor for accurate localization without having readable markers. For this purpose, we use a floor covering that can be produced as cheaply as common industrial floors. Although we do not use any filtering, prior, or temporal information, we can estimate our position in 75.7 % of all images with a mean position error of 2 cm and a rotation error of 2.4 %. Thus, the robot kidnapping problem can be solved with high precision in every frame, even while the robot is moving. Furthermore, we show that our framework with our detector and descriptor combination is able to outperform comparable approaches.
- Abstract(参考訳): 移動ロボットのローカライゼーションは、環境からの優れた特徴の可用性に依存する。
Lidarのようなセンサーシステムは人気があるが、地面の画像からユニークな特徴を抽出することもできる。
この研究は、深いニューラルネットワークを利用して産業用フロアから十分な特徴を抽出し、読みやすいマーカーを使わずに正確なローカライゼーションを実現するキーポイントローカライゼーションフレームワーク(KOALA)を提示する。
この目的のために、私たちは一般的な工業用床と同じくらい安価に製造できる床カバーを使用します。
フィルタリング、事前情報、時間情報は一切使用しないが、平均位置誤差が2cm、回転誤差が2.4%の全ての画像の75.7%で位置を推定できる。
これにより、ロボットの移動中であっても、各フレームにおいて高精度でロボット誘拐問題を解くことができる。
さらに、検出器とディスクリプタの組み合わせによるフレームワークは、同等のアプローチよりも優れていることを示す。
関連論文リスト
- Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
本研究は,2次元局所特徴の検出におけるサブピクセル精度の課題に対処する。
本稿では,検出された特徴に対するオフセットベクトルを学習することにより,サブピクセル精度で検出器を拡張できる新しいネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T12:39:56Z) - Grasping Trajectory Optimization with Point Clouds [6.521613092713019]
本稿では,ロボットとタスク空間のポイントクラウド表現に基づく,ロボットグルーピングのための新しい軌道最適化手法を提案する。
本手法では,ロボットはリンク面上の3Dポイントで表現され,ロボットのタスク空間は深度センサから得られる点雲で表現される。
論文 参考訳(メタデータ) (2024-03-08T17:29:51Z) - Energy-Based Models for Cross-Modal Localization using Convolutional
Transformers [52.27061799824835]
GPSのない衛星画像に対して、距離センサを搭載した地上車両を位置決めする新しい枠組みを提案する。
本稿では, 畳み込み変換器を用いて, 高精度な計量レベルの局所化を行う手法を提案する。
我々は、エンドツーエンドでモデルをトレーニングし、KITTI、Pandaset、カスタムデータセットの最先端技術よりも高い精度でアプローチを実証する。
論文 参考訳(メタデータ) (2023-06-06T21:27:08Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - External Camera-based Mobile Robot Pose Estimation for Collaborative
Perception with Smart Edge Sensors [22.5939915003931]
本稿では,移動ロボットのポーズを多視点RGB画像を用いた静的カメラネットワークのアロセントリック座標で推定する手法を提案する。
画像はオンラインで、深層ニューラルネットワークによってスマートエッジセンサーでローカルに処理され、ロボットを検出する。
ロボットのポーズを正確に推定すると、その観察は同中心のシーンモデルに融合することができる。
論文 参考訳(メタデータ) (2023-03-07T11:03:33Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
予備的バイナリフレーム分類を用いた物体検出のためのニューラルネットワークの最適化アルゴリズムを提案する。
周囲に6台のローリングシャッターカメラを備えた自律移動ロボットを360度視野として実験装置として使用した。
論文 参考訳(メタデータ) (2021-10-22T15:05:37Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multiは、最初のマルチロボットシステムであり、不正なインターループとイントラロボットループの閉鎖を識別し拒否することができる。
我々は、フォトリアリスティックシミュレーション、SLAMベンチマークデータセット、地上ロボットを用いて収集された屋外データセットの挑戦において、Kimera-Multiを実証した。
論文 参考訳(メタデータ) (2021-06-28T03:56:40Z) - LatentSLAM: unsupervised multi-sensor representation learning for
localization and mapping [7.857987850592964]
低次元潜在状態記述子を生成する教師なし表現学習手法を提案する。
本手法はセンサ非依存であり,任意のセンサモダリティに適用可能である。
複数のセンサを組み合わせることで、偽の一致数を減らすことで堅牢性が向上することを示す。
論文 参考訳(メタデータ) (2021-05-07T13:44:32Z) - Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic
Simultaneous Localization and Mapping [57.173793973480656]
本稿では,高密度メカニカル・セマンティックSLAMのための完全分散マルチロボットシステムを提案する。
私たちのシステムはKimera-Multiと呼ばれ、視覚慣性センサーを備えたロボットチームによって実装されています。
Kimera-Multiは環境の3Dメッシュモデルをリアルタイムで構築し、メッシュの各面にセマンティックラベルをアノテートする。
論文 参考訳(メタデータ) (2020-11-08T21:38:12Z) - Pose Estimation for Robot Manipulators via Keypoint Optimization and
Sim-to-Real Transfer [10.369766652751169]
キーポイント検出は多くのロボットアプリケーションにとって重要なビルディングブロックである。
ディープラーニング手法は、マーカーのない方法でユーザ定義キーポイントを検出できる。
これらの課題を克服するキーポイントを定義するための,新たな自律的手法を提案する。
論文 参考訳(メタデータ) (2020-10-15T22:38:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。