Steerable Anatomical Shape Synthesis with Implicit Neural Representations
- URL: http://arxiv.org/abs/2504.03313v1
- Date: Fri, 04 Apr 2025 09:49:00 GMT
- Title: Steerable Anatomical Shape Synthesis with Implicit Neural Representations
- Authors: Bram de Wilde, Max T. Rietberg, Guillaume Lajoinie, Jelmer M. Wolterink,
- Abstract summary: We propose a steerable generative model based on implicit neural representations.<n>Our results demonstrate that the proposed model achieves high-quality shape generation while enabling targeted anatomical modifications.
- Score: 1.8399318639816038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative modeling of anatomical structures plays a crucial role in virtual imaging trials, which allow researchers to perform studies without the costs and constraints inherent to in vivo and phantom studies. For clinical relevance, generative models should allow targeted control to simulate specific patient populations rather than relying on purely random sampling. In this work, we propose a steerable generative model based on implicit neural representations. Implicit neural representations naturally support topology changes, making them well-suited for anatomical structures with varying topology, such as the thyroid. Our model learns a disentangled latent representation, enabling fine-grained control over shape variations. Evaluation includes reconstruction accuracy and anatomical plausibility. Our results demonstrate that the proposed model achieves high-quality shape generation while enabling targeted anatomical modifications.
Related papers
- Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
We explore high-dimensional problems related to physiological monitoring using latent variable models.
First, we present a novel deep state-space model to generate electrical waveforms of the heart using optically obtained signals as inputs.
Second, we present a brain signal modeling scheme that combines the strengths of probabilistic graphical models and deep adversarial learning.
Third, we propose a framework for the joint modeling of physiological measures and behavior.
arXiv Detail & Related papers (2024-05-29T17:07:33Z) - Cortical Surface Diffusion Generative Models [4.050721206558478]
Cortical surface analysis has gained increased prominence, given its potential implications for neurological and developmental disorders.
Traditional vision diffusion models, while effective in generating natural images, present limitations in capturing intricate development patterns in neuroimaging due to limited datasets.
In this work, we proposed a novel diffusion model for the generation of cortical surface metrics, using modified surface vision transformers as the principal architecture.
arXiv Detail & Related papers (2024-02-07T11:12:09Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeIT represents an anatomical structure with an implicit template field shared within the same category.
It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape.
A template Interaction Module is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes.
arXiv Detail & Related papers (2023-12-11T07:09:32Z) - Exploring hyperelastic material model discovery for human brain cortex:
multivariate analysis vs. artificial neural network approaches [10.003764827561238]
This study aims to identify the most favorable material model for human brain tissue.
We apply artificial neural network and multiple regression methods to a generalization of widely accepted classic models.
arXiv Detail & Related papers (2023-10-16T18:49:59Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models.
We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics.
arXiv Detail & Related papers (2023-07-28T13:22:32Z) - Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy [0.0]
We propose Mesh2SSM, a new approach that leverages unsupervised, permutation-invariant representation learning to estimate how to deform a template point cloud to subject-specific meshes.
Mesh2SSM can also learn a population-specific template, reducing any bias due to template selection.
arXiv Detail & Related papers (2023-05-13T00:03:59Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
We propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena.
Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video.
The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images.
arXiv Detail & Related papers (2022-04-29T11:55:35Z) - A Twin Neural Model for Uplift [59.38563723706796]
Uplift is a particular case of conditional treatment effect modeling.
We propose a new loss function defined by leveraging a connection with the Bayesian interpretation of the relative risk.
We show our proposed method is competitive with the state-of-the-art in simulation setting and on real data from large scale randomized experiments.
arXiv Detail & Related papers (2021-05-11T16:02:39Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Discriminative and Generative Models for Anatomical Shape Analysison
Point Clouds with Deep Neural Networks [3.7814216736076434]
We introduce deep neural networks for the analysis of anatomical shapes that learn a low-dimensional shape representation from the given task.
Our framework is modular and consists of several computing blocks that perform fundamental shape processing tasks.
We propose a discriminative model for disease classification and age regression, as well as a generative model for the accruate reconstruction of shapes.
arXiv Detail & Related papers (2020-10-02T07:37:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.