論文の概要: Adaptive Classification of Interval-Valued Time Series
- arxiv url: http://arxiv.org/abs/2504.03318v1
- Date: Fri, 04 Apr 2025 09:52:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:31.184565
- Title: Adaptive Classification of Interval-Valued Time Series
- Title(参考訳): 区間値時系列の適応的分類
- Authors: Wan Tian, Zhongfeng Qin,
- Abstract要約: 本稿では,区間値時系列分類のための適応的手法を提案する。
我々は、間隔値の時系列表現を点値の時系列画像化法に基づいて画像に変換する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In recent years, the modeling and analysis of interval-valued time series have garnered significant attention in the fields of econometrics and statistics. However, the existing literature primarily focuses on regression tasks while neglecting classification aspects. In this paper, we propose an adaptive approach for interval-valued time series classification. Specifically, we represent interval-valued time series using convex combinations of upper and lower bounds of intervals and transform these representations into images based on point-valued time series imaging methods. We utilize a fine-grained image classification neural network to classify these images, to achieve the goal of classifying the original interval-valued time series. This proposed method is applicable to both univariate and multivariate interval-valued time series. On the optimization front, we treat the convex combination coefficients as learnable parameters similar to the parameters of the neural network and provide an efficient estimation method based on the alternating direction method of multipliers (ADMM). On the theoretical front, under specific conditions, we establish a margin-based multiclass generalization bound for generic CNNs composed of basic blocks involving convolution, pooling, and fully connected layers. Through simulation studies and real data applications, we validate the effectiveness of the proposed method and compare its performance against a wide range of point-valued time series classification methods.
- Abstract(参考訳): 近年、間隔値時系列のモデリングと解析は、計量学や統計学の分野で大きな注目を集めている。
しかし、既存の文献は主に分類の側面を無視しながら回帰作業に焦点を当てている。
本稿では,区間値時系列分類のための適応的手法を提案する。
具体的には、上と下の境界の凸結合を用いて間隔値時系列を表現し、点値時系列イメージング法に基づいてこれらの表現を画像に変換する。
我々は、これらの画像の分類にきめ細かな画像分類ニューラルネットワークを使用し、元の間隔値時系列を分類する目的を達成する。
本手法は単変量と多変量間隔値時系列の両方に適用できる。
最適化面では、凸結合係数をニューラルネットワークのパラメータに類似した学習可能なパラメータとして扱い、乗算器の交互方向法(ADMM)に基づく効率的な推定方法を提供する。
理論的には、特定の条件下では、畳み込み、プーリング、完全連結層を含む基本ブロックからなる一般的なCNNに対して、マージンベースの多重クラス一般化を確立する。
シミュレーション研究と実データ応用を通して,提案手法の有効性を検証し,その性能を幅広い点評価時系列分類法と比較する。
関連論文リスト
- TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Fuzzy clustering of ordinal time series based on two novel distances
with economic applications [0.12891210250935145]
順序時間列間の2つの新しい距離を導入し、ファジィクラスタリング手順を構築するために使用した。
結果のクラスタリングアルゴリズムは計算効率が良く、類似のプロセスから生成されるシリーズをグループ化することができる。
経済時系列に関する2つの具体的な応用は、提案手法の有用性を示している。
論文 参考訳(メタデータ) (2023-04-24T16:39:22Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - COSTI: a New Classifier for Sequences of Temporal Intervals [0.0]
時間間隔のシーケンスを直接操作する新しい分類法を開発した。
提案手法は高い精度を保ち、変換データの操作に接続する欠点を回避しつつ、より良い性能が得られる。
論文 参考訳(メタデータ) (2022-04-28T12:55:06Z) - Elastic Product Quantization for Time Series [19.839572576189187]
本稿では,時間ゆらぎの時間系列の効率的な類似度に基づく比較に製品量子化を用いることを提案する。
提案手法は, 時系列アプリケーションにおける弾性測度を, 高効率(メモリ使用量と時間の両方)で置き換える手法として現れる。
論文 参考訳(メタデータ) (2022-01-04T09:23:06Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。