Decentralized Collective World Model for Emergent Communication and Coordination
- URL: http://arxiv.org/abs/2504.03353v1
- Date: Fri, 04 Apr 2025 11:17:52 GMT
- Title: Decentralized Collective World Model for Emergent Communication and Coordination
- Authors: Kentaro Nomura, Tatsuya Aoki, Tadahiro Taniguchi, Takato Horii,
- Abstract summary: We propose a fully decentralized multi-agent world model that enables both symbol emergence for communication and coordinated behavior.<n>Our method integrates world models with communication channels, enabling agents to predict environmental dynamics, estimate states from partial observations, and share critical information.
- Score: 6.27726754138289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a fully decentralized multi-agent world model that enables both symbol emergence for communication and coordinated behavior through temporal extension of collective predictive coding. Unlike previous research that focuses on either communication or coordination separately, our approach achieves both simultaneously. Our method integrates world models with communication channels, enabling agents to predict environmental dynamics, estimate states from partial observations, and share critical information through bidirectional message exchange with contrastive learning for message alignment. Using a two-agent trajectory drawing task, we demonstrate that our communication-based approach outperforms non-communicative models when agents have divergent perceptual capabilities, achieving the second-best coordination after centralized models. Importantly, our distributed approach with constraints preventing direct access to other agents' internal states facilitates the emergence of more meaningful symbol systems that accurately reflect environmental states. These findings demonstrate the effectiveness of decentralized communication for supporting coordination while developing shared representations of the environment.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Decentralised Emergence of Robust and Adaptive Linguistic Conventions in
Populations of Autonomous Agents Grounded in Continuous Worlds [4.63732827131233]
This paper introduces a methodology through which a population of autonomous agents can establish a linguistic convention.
The convention emerges in a decentralised manner through local communicative interactions between pairs of agents.
We show that the methodology enables a population to converge on a communicatively effective, coherent and human-interpretable linguistic convention.
arXiv Detail & Related papers (2024-01-16T16:11:35Z) - Learning Multi-Agent Communication with Contrastive Learning [3.816854668079928]
We introduce an alternative perspective where communicative messages are considered as different incomplete views of the environment state.
By examining the relationship between messages sent and received, we propose to learn to communicate using contrastive learning.
In communication-essential environments, our method outperforms previous work in both performance and learning speed.
arXiv Detail & Related papers (2023-07-03T23:51:05Z) - A Decentralized Communication Framework based on Dual-Level Recurrence
for Multi-Agent Reinforcement Learning [5.220940151628735]
We present a dual-level recurrent communication framework for multi-agent systems.
The first recurrence occurs in the communication sequence and is used to transmit communication data among agents.
The second recurrence is based on the time sequence and combines the historical observations for each agent.
arXiv Detail & Related papers (2022-02-22T01:36:59Z) - Interpretation of Emergent Communication in Heterogeneous Collaborative
Embodied Agents [83.52684405389445]
We introduce the collaborative multi-object navigation task CoMON.
In this task, an oracle agent has detailed environment information in the form of a map.
It communicates with a navigator agent that perceives the environment visually and is tasked to find a sequence of goals.
We show that the emergent communication can be grounded to the agent observations and the spatial structure of the 3D environment.
arXiv Detail & Related papers (2021-10-12T06:56:11Z) - Inference-Based Deterministic Messaging For Multi-Agent Communication [1.8275108630751844]
We study learning in matrix-based signaling games to show that decentralized methods can converge to a suboptimal policy.
We then propose a modification to the messaging policy, in which the sender deterministically chooses the best message that helps the receiver to infer the sender's observation.
arXiv Detail & Related papers (2021-03-03T03:09:22Z) - Learning to cooperate: Emergent communication in multi-agent navigation [49.11609702016523]
We show that agents performing a cooperative navigation task learn an interpretable communication protocol.
An analysis of the agents' policies reveals that emergent signals spatially cluster the state space.
Using populations of agents, we show that the emergent protocol has basic compositional structure.
arXiv Detail & Related papers (2020-04-02T16:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.