論文の概要: Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2504.03380v1
- Date: Fri, 04 Apr 2025 11:52:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:36.020041
- Title: Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
- Title(参考訳): 配向強化学習のためのオンライン難易度フィルタリング
- Authors: Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, Donghyun Kwak,
- Abstract要約: RORL(Reasoning-Oriented Reinforcement Learning)は大規模言語モデル(LLM)の推論能力を高める
RORLトレーニングの有効性を最大化するために,訓練モデルがフライ時の中間精度を達成する問題でバッチを計算できることが示される。
- 参考スコア(独自算出の注目度): 8.537540092998311
- License:
- Abstract: Reasoning-Oriented Reinforcement Learning (RORL) enhances the reasoning ability of Large Language Models (LLMs). However, due to the sparsity of rewards in RORL, effective training is highly dependent on the selection of problems of appropriate difficulty. Although curriculum learning attempts to address this by adjusting difficulty, it often relies on static schedules, and even recent online filtering methods lack theoretical grounding and a systematic understanding of their effectiveness. In this work, we theoretically and empirically show that curating the batch with the problems that the training model achieves intermediate accuracy on the fly can maximize the effectiveness of RORL training, namely balanced online difficulty filtering. We first derive that the lower bound of the KL divergence between the initial and the optimal policy can be expressed with the variance of the sampled accuracy. Building on those insights, we show that balanced filtering can maximize the lower bound, leading to better performance. Experimental results across five challenging math reasoning benchmarks show that balanced online filtering yields an additional 10% in AIME and 4% improvements in average over plain GRPO. Moreover, further analysis shows the gains in sample efficiency and training time efficiency, exceeding the maximum reward of plain GRPO within 60% training time and the volume of the training set.
- Abstract(参考訳): RORL(Reasoning-Oriented Reinforcement Learning)は、大規模言語モデル(LLM)の推論能力を高める。
しかし、RORLの報酬の幅が広いため、効果的なトレーニングは適切な難易度を持つ問題の選定に大きく依存する。
カリキュラム学習は難易度を調整することでこの問題に対処しようとするが、しばしば静的なスケジュールに依存し、最近のオンラインフィルタリング手法でさえ理論的な根拠やその効果の体系的な理解を欠いている。
本研究は, オンライン難易度フィルタリングにおいて, RORLトレーニングの有効性を最大化することができることを理論的, 実証的に示す。
まず、初期値と最適値とのKL分散の下位境界は、サンプリングされた精度のばらつきで表現できることを導出する。
これらの知見に基づいて、バランスの取れたフィルタリングが低いバウンダリを最大化でき、パフォーマンスが向上することを示す。
5つの挑戦的な数学推論ベンチマークによる実験結果から、オンラインフィルタリングのバランスはAIMEで10%、通常のGRPOよりも平均で4%改善していることがわかった。
さらに、サンプル効率とトレーニング時間効率が60%のトレーニング時間とトレーニングセットのボリュームにおいて、通常のGRPOの最大報酬を超えていることを示す。
関連論文リスト
- Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization [22.67700436936984]
ステップレベルのオフライン強化学習アルゴリズムであるDAPO(Direct Advantage Policy Optimization)を導入する。
DAPOは、各ステップにおける推論精度を予測するために批判機能を使用し、それによって高密度信号を生成して生成戦略を洗練させる。
その結果,DAPO は SFT モデルと RL モデルの両方の数学的・コード的能力を効果的に向上し,DAPO の有効性を示すことができた。
論文 参考訳(メタデータ) (2024-12-24T08:39:35Z) - Dynamic Learning Rate for Deep Reinforcement Learning: A Bandit Approach [0.9549646359252346]
勾配に基づく手法を用いて訓練された深層強化学習(RL)モデルでは、勾配の選択とその学習速度は優れた性能を達成するために不可欠である。
本稿では,学習中のエージェントのパフォーマンスに基づいて学習率を選択するメタ学習手法である深層強化学習(LRRL)の動的学習率を提案する。
論文 参考訳(メタデータ) (2024-10-16T14:15:28Z) - Prior Constraints-based Reward Model Training for Aligning Large Language Models [58.33118716810208]
本稿では,この問題を解決するために,事前制約に基づくリワードモデル(PCRM)のトレーニング手法を提案する。
PCRMは、前回の制約、特に各比較ペアの出力間の長さ比とコサイン類似性を、最適化の規模を調節しスコアマージンを制御するための報酬モデルトレーニングに組み入れている。
実験結果から,PCRMは報酬スコアのスケーリングを効果的に抑制することによりアライメント性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-04-01T07:49:11Z) - PYRA: Parallel Yielding Re-Activation for Training-Inference Efficient Task Adaptation [61.57833648734164]
本稿では, PYRA(Parallel Yielding Re-Activation)法を提案する。
PYRAは低圧縮率と高圧縮率の両方で競合する全ての手法より優れている。
論文 参考訳(メタデータ) (2024-03-14T09:06:49Z) - Parameter-Efficient Learning for Text-to-Speech Accent Adaptation [58.356667204518985]
本稿では、テキスト音声(TTS)のための低リソースアクセント適応を開発するためのパラメータ効率学習(PEL)を提案する。
冷凍前訓練TSモデルからの資源効率適応は、元のトレーニング可能なパラメータの1.2%から0.8%しか使用していない。
実験結果から,提案手法はパラメータ効率の高いデコーダの微調整により,自然度と競合できることがわかった。
論文 参考訳(メタデータ) (2023-05-18T22:02:59Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
強化学習(Reinforcement Learning, RL)は、教師付き学習とは本質的に異なり、実際、これらの学習は単純なRLタスクでもうまく機能しない。
エージェント勾配分布は非独立で同一分布であり、非効率なメタトレーニングをもたらす。
おもちゃのタスクでしか訓練されていないが、我々の学習はブラックスの目に見えない複雑なタスクを一般化できることを示した。
論文 参考訳(メタデータ) (2023-02-03T00:11:02Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Off-policy Reinforcement Learning with Optimistic Exploration and
Distribution Correction [73.77593805292194]
我々は、政治以外のアクター批判的枠組みにおいて、批評家のほぼ上位信頼度を最大化するために、別の調査政策を訓練する。
最近導入されたDICEフレームワークを応用して、非政治アクター犯罪訓練のための分布補正比を学習する。
論文 参考訳(メタデータ) (2021-10-22T22:07:51Z) - Curriculum Learning: A Regularization Method for Efficient and Stable
Billion-Scale GPT Model Pre-Training [18.640076155697415]
本稿では,自己回帰モデルによる事前学習の収束速度の向上を支援するカリキュラム学習に基づく手法を提案する。
評価の結果,カリキュラム学習により,バッチサイズが8倍,学習速度が4倍のGPT-2モデルを学習できることがわかった。
論文 参考訳(メタデータ) (2021-08-13T06:32:53Z) - SASL: Saliency-Adaptive Sparsity Learning for Neural Network
Acceleration [20.92912642901645]
そこで本稿では、さらなる最適化のために、SASL(Saliency-Adaptive Sparsity Learning)アプローチを提案する。
ResNet-50 の 49.7% の FLOP を 0.39% のトップ-1 と 0.05% のトップ-5 の精度で削減できる。
論文 参考訳(メタデータ) (2020-03-12T16:49:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。