論文の概要: BitHEP -- The Limits of Low-Precision ML in HEP
- arxiv url: http://arxiv.org/abs/2504.03387v1
- Date: Fri, 04 Apr 2025 11:57:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:46:59.956113
- Title: BitHEP -- The Limits of Low-Precision ML in HEP
- Title(参考訳): BitHEP - HEPにおける低精度MLの限界
- Authors: Claudius Krause, Daohan Wang, Ramon Winterhalder,
- Abstract要約: 我々は最近提案されたBitNetアーキテクチャをHEPアプリケーションで評価した。
本稿では,クォークグルーオン判別,SMEFTパラメータ推定,検出器シミュレーションの妥当性について検討する。
我々の結果から,BitNetは分類タスクにおいて一貫して競争力を発揮するが,その回帰・生成性能はネットワークのサイズや種類によって異なることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The increasing complexity of modern neural network architectures demands fast and memory-efficient implementations to mitigate computational bottlenecks. In this work, we evaluate the recently proposed BitNet architecture in HEP applications, assessing its performance in classification, regression, and generative modeling tasks. Specifically, we investigate its suitability for quark-gluon discrimination, SMEFT parameter estimation, and detector simulation, comparing its efficiency and accuracy to state-of-the-art methods. Our results show that while BitNet consistently performs competitively in classification tasks, its performance in regression and generation varies with the size and type of the network, highlighting key limitations and potential areas for improvement.
- Abstract(参考訳): 現代のニューラルネットワークアーキテクチャの複雑さの増大は、計算ボトルネックを軽減するために、高速でメモリ効率のよい実装を必要とする。
本研究では,HEPアプリケーションにおいて最近提案されたBitNetアーキテクチャを評価し,分類,回帰,生成的モデリングタスクの性能を評価する。
具体的には,クォークグルーオン判別,SMEFTパラメータ推定,検出器シミュレーションの妥当性について検討し,その効率と精度を最先端手法と比較した。
我々の結果は、BitNetは分類タスクにおいて一貫して競争力を発揮するが、その回帰と生成のパフォーマンスはネットワークのサイズやタイプによって異なり、改善の鍵となる制限と潜在的な領域を強調していることを示している。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
異常検出(AD)は、将来の通信システムのレジリエンスを確保するための重要な要素として、ますます認識されている。
この研究は、不完全測定を用いたネットワークフローにおけるADについて考察する。
本稿では,正規化モデル適合性に基づくブロック帰属凸近似アルゴリズムを提案する。
ベイズ的アプローチに触発されて、我々はモデルアーキテクチャを拡張し、フローごとのオンライン適応とステップごとの統計処理を行う。
論文 参考訳(メタデータ) (2024-09-17T19:59:57Z) - Split-Boost Neural Networks [1.1549572298362787]
本稿では,スプリットブートと呼ばれるフィードフォワードアーキテクチャの革新的なトレーニング戦略を提案する。
このような新しいアプローチは、最終的に正規化項を明示的にモデル化することを避けることができる。
提案した戦略は、ベンチマーク医療保険設計問題内の実世界の(匿名化された)データセットでテストされる。
論文 参考訳(メタデータ) (2023-09-06T17:08:57Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
機械学習における不確実性推定は、予測モデルの信頼性と解釈可能性を高めるための最重要課題である。
画素ワイド回帰タスクに対するMIMO(Multiple-Input Multiple-Output)フレームワークの適応について述べる。
論文 参考訳(メタデータ) (2023-08-14T22:08:28Z) - A New PHO-rmula for Improved Performance of Semi-Structured Networks [0.0]
本研究では,SSNにおけるモデルコンポーネントのコントリビューションを適切に識別する手法が,最適ネットワーク推定に繋がることを示す。
モデルコンポーネントの識別性を保証し,予測品質を向上する非侵襲的ポストホック化(PHO)を提案する。
我々の理論的な知見は、数値実験、ベンチマーク比較、およびCOVID-19感染症に対する現実の応用によって裏付けられている。
論文 参考訳(メタデータ) (2023-06-01T10:23:28Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
ターゲットハードウェアがコンピューティングの端に達すると、スパイキングニューラルネットワーク(SNN)が実用的な選択となる。
我々は、近似誤差を伝播するそのようなモデルの能力を生かした探索手法を開発するために、インターヴァル算術(IA)モデルを用いる。
論文 参考訳(メタデータ) (2022-11-22T15:08:05Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Low-bit Shift Network for End-to-End Spoken Language Understanding [7.851607739211987]
本稿では,連続パラメータを低ビットの2値に量子化する2乗量子化法を提案する。
これにより、高価な乗算演算を除去し、低ビット重みを使用すれば計算の複雑さを低減できる。
論文 参考訳(メタデータ) (2022-07-15T14:34:22Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
本稿では,高精度かつ高効率な人間のポーズ推定について述べる。
我々は、最先端技術よりも精度と効率を両立させる文脈において、この設計選択を再分析する。
本モデルでは,MPII と LSP のデータセットから最先端の結果が得られる。
論文 参考訳(メタデータ) (2020-02-25T18:51:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。