論文の概要: PICA: Physics-Integrated Clothed Avatar
- arxiv url: http://arxiv.org/abs/2407.05324v1
- Date: Sun, 7 Jul 2024 10:23:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:17:13.035821
- Title: PICA: Physics-Integrated Clothed Avatar
- Title(参考訳): PICA:物理学を駆使した布のアバター
- Authors: Bo Peng, Yunfan Tao, Haoyu Zhan, Yudong Guo, Juyong Zhang,
- Abstract要約: PICAは, 物理学的精度のよい, 高忠実でアニマタブルな人間のアバターを, ゆるやかな衣服でも表現できる新しい表現法である。
提案手法は, 複雑で斬新な運転ポーズにおいて, 人体の高忠実なレンダリングを実現し, 従来手法よりも大幅に優れていた。
- 参考スコア(独自算出の注目度): 30.277983921620663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce PICA, a novel representation for high-fidelity animatable clothed human avatars with physics-accurate dynamics, even for loose clothing. Previous neural rendering-based representations of animatable clothed humans typically employ a single model to represent both the clothing and the underlying body. While efficient, these approaches often fail to accurately represent complex garment dynamics, leading to incorrect deformations and noticeable rendering artifacts, especially for sliding or loose garments. Furthermore, previous works represent garment dynamics as pose-dependent deformations and facilitate novel pose animations in a data-driven manner. This often results in outcomes that do not faithfully represent the mechanics of motion and are prone to generating artifacts in out-of-distribution poses. To address these issues, we adopt two individual 3D Gaussian Splatting (3DGS) models with different deformation characteristics, modeling the human body and clothing separately. This distinction allows for better handling of their respective motion characteristics. With this representation, we integrate a graph neural network (GNN)-based clothed body physics simulation module to ensure an accurate representation of clothing dynamics. Our method, through its carefully designed features, achieves high-fidelity rendering of clothed human bodies in complex and novel driving poses, significantly outperforming previous methods under the same settings.
- Abstract(参考訳): PICAは, 物理学的精度のよい, 高忠実でアニマタブルな人間のアバターを, ゆるやかな衣服でも表現できる新しい表現法である。
以前のニューラルネットワークに基づく、アニマタブルな服を着た人間の表現は、通常、服と下層の身体の両方を表現するために単一のモデルを用いている。
効率的ではあるが、これらのアプローチは複雑な衣服のダイナミクスを正確に表現するのに失敗し、特にスライディングやゆったりとした衣服において、誤った変形と顕著なレンダリングアーティファクトをもたらす。
さらに、以前の作品では、衣服のダイナミクスをポーズ依存の変形として表現し、データ駆動型で新しいポーズアニメーションを促進する。
これはしばしば、運動の力学を忠実に表現せず、分布外ポーズで人工物を生成する傾向がある結果をもたらす。
これらの問題に対処するために、変形特性が異なる2つの個別3次元ガウススプラッティング(3DGS)モデルを採用し、人体と衣服を別々にモデル化する。
この区別により、それぞれの運動特性をよりよく扱うことができる。
この表現により、我々は、衣服力学の正確な表現を保証するために、グラフニューラルネットワーク(GNN)ベースの布体物理シミュレーションモジュールを統合する。
提案手法は, 慎重に設計した特徴により, 複雑で斬新な運転ポーズにおいて, 被服体の高忠実なレンダリングを実現し, 従来手法よりも大幅に優れていた。
関連論文リスト
- Towards High-Quality 3D Motion Transfer with Realistic Apparel Animation [69.36162784152584]
本研究では,現実的なアパレルアニメーションを用いた高品質な動き伝達を目的とした新しい手法を提案する。
本稿では,2つのニューラル変形モジュールを介し,物体とアパレルの変形を学習するデータ駆動パイプラインを提案する。
本手法は各種アパレルの品質に優れた結果をもたらす。
論文 参考訳(メタデータ) (2024-07-15T22:17:35Z) - AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
AniDressは、非常にスパースなマルチビュービデオを用いて、ゆるい服装でアニマタブルな人間のアバターを生成する新しい方法である。
身体運動と衣服運動の両方に条件付されたポーズ駆動型変形可能なニューラルラディアンス場を導入し、両方の部品を明示的に制御する。
本手法は,身体から高度に逸脱する自然の衣服のダイナミックスを描画し,目に見えない景色とポーズの両方に一般化することができる。
論文 参考訳(メタデータ) (2024-01-27T08:48:18Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
一つのビデオから動的に3D映像を映し出すリアルな人間のアバターを作成するための効率的なアプローチを提案する。
GustafAvatarは、公開データセットと収集データセットの両方で検証されています。
論文 参考訳(メタデータ) (2023-12-04T18:55:45Z) - CaPhy: Capturing Physical Properties for Animatable Human Avatars [44.95805736197971]
CaPhyは、服のリアルなダイナミックな特性を持つ、アニマタブルな人間のアバターを再構築する新しい方法である。
本研究の目的は、実際の観測から衣服の幾何学的・物理的特性を捉えることである。
我々は,非教師なしトレーニングと物理に基づく損失と,スキャンデータを用いた3次元教師ありトレーニングを組み合わせて,衣服の動的モデルを構築した。
論文 参考訳(メタデータ) (2023-08-11T04:01:13Z) - PERGAMO: Personalized 3D Garments from Monocular Video [6.8338761008826445]
PERGAMOはモノクロ画像から3D衣服の変形可能なモデルを学ぶためのデータ駆動型アプローチである。
まず,1枚の画像から衣服の3次元形状を再構築する新しい手法を紹介し,それを用いて単眼ビデオから衣服のデータセットを構築する。
本手法は,実世界の動作にマッチする衣料アニメーションを作成でき,モーションキャプチャーデータセットから抽出した身体の動きを一般化できることを示す。
論文 参考訳(メタデータ) (2022-10-26T21:15:54Z) - Dressing Avatars: Deep Photorealistic Appearance for Physically
Simulated Clothing [49.96406805006839]
リアルな衣服の動態とリアルなデータから学んだフォトリアリスティックな外観の両方を示す衣服の明示的なモデリングを施したポーズ駆動アバターを紹介した。
我々の重要な貢献は物理的にインスパイアされた外観ネットワークであり、視界依存的かつダイナミックな影効果を持つ光リアルな外観を生成できる。
論文 参考訳(メタデータ) (2022-06-30T17:58:20Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
本稿では,人体に対する新しい暗黙の表現法を提案する。
完全に微分可能で、非交叉形状で最適化可能であり、潜在空間を映し出す。
我々のモデルは、よく設計された損失を伴う、水密でない生データを直接訓練し、微調整することができる。
論文 参考訳(メタデータ) (2021-11-30T04:10:57Z) - Real-time Deep Dynamic Characters [95.5592405831368]
本研究では,高度にリアルな形状,動き,ダイナミックな外観を示す3次元人物モデルを提案する。
我々は,新しいグラフ畳み込みネットワークアーキテクチャを用いて,身体と衣服の運動依存的変形学習を実現する。
本モデルでは, 運動依存的表面変形, 物理的に妥当な動的衣服変形, および映像現実的表面テクスチャを, 従来よりも細部まで高レベルに生成することを示す。
論文 参考訳(メタデータ) (2021-05-04T23:28:55Z) - Dynamic Neural Garments [45.833166320896716]
本稿では,身体の関節運動を取り込み,リアルな動的衣服画像列を直接生成する解を提案する。
具体的には, アバターの目標関節運動列を考慮し, ダイナミック・ニューラル・ウェアスを提案し, プラウシブル・ダイナミック・ウェアスの外観をシミュレートし, レンダリングする。
論文 参考訳(メタデータ) (2021-02-23T17:21:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。