PF3Det: A Prompted Foundation Feature Assisted Visual LiDAR 3D Detector
- URL: http://arxiv.org/abs/2504.03563v1
- Date: Fri, 04 Apr 2025 16:11:25 GMT
- Title: PF3Det: A Prompted Foundation Feature Assisted Visual LiDAR 3D Detector
- Authors: Kaidong Li, Tianxiao Zhang, Kuan-Chuan Peng, Guanghui Wang,
- Abstract summary: We propose Prompted Foundational 3D Detector (PF3Det), which integrates foundation model encoders and soft prompts to enhance LiDAR-camera feature fusion.<n>PF3Det achieves the state-of-the-art results under limited training data, improving NDS by 1.19% and mAP by 2.42% on the nuScenes dataset.
- Score: 15.8414696386661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection is crucial for autonomous driving, leveraging both LiDAR point clouds for precise depth information and camera images for rich semantic information. Therefore, the multi-modal methods that combine both modalities offer more robust detection results. However, efficiently fusing LiDAR points and images remains challenging due to the domain gaps. In addition, the performance of many models is limited by the amount of high quality labeled data, which is expensive to create. The recent advances in foundation models, which use large-scale pre-training on different modalities, enable better multi-modal fusion. Combining the prompt engineering techniques for efficient training, we propose the Prompted Foundational 3D Detector (PF3Det), which integrates foundation model encoders and soft prompts to enhance LiDAR-camera feature fusion. PF3Det achieves the state-of-the-art results under limited training data, improving NDS by 1.19% and mAP by 2.42% on the nuScenes dataset, demonstrating its efficiency in 3D detection.
Related papers
- LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeAD is a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets.<n>Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples.<n>Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection.
arXiv Detail & Related papers (2025-01-07T18:59:59Z) - Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
Existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV)
We propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels.
Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection.
arXiv Detail & Related papers (2024-10-09T22:57:47Z) - 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
We introduce SuperFlow, a novel framework designed to harness consecutive LiDAR-camera pairs for establishing pretraining objectives.
To further boost learning efficiency, we incorporate a plug-and-play view consistency module that enhances alignment of the knowledge distilled from camera views.
arXiv Detail & Related papers (2024-07-08T17:59:54Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection.
Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor.
The accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods.
arXiv Detail & Related papers (2024-04-10T03:54:53Z) - ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and
Spatio-Temporal Affinities for 3D Multi-Object Tracking [26.976216624424385]
3D multi-object tracking (MOT) is essential for an autonomous mobile agent to safely navigate a scene.
We aim to develop a 3D MOT framework that fuses camera and LiDAR sensor information.
arXiv Detail & Related papers (2023-10-04T02:17:59Z) - Multi-Sem Fusion: Multimodal Semantic Fusion for 3D Object Detection [11.575945934519442]
LiDAR and camera fusion techniques are promising for achieving 3D object detection in autonomous driving.
Most multi-modal 3D object detection frameworks integrate semantic knowledge from 2D images into 3D LiDAR point clouds.
We propose a general multi-modal fusion framework Multi-Sem Fusion (MSF) to fuse the semantic information from both the 2D image and 3D points scene parsing results.
arXiv Detail & Related papers (2022-12-10T10:54:41Z) - FusionRCNN: LiDAR-Camera Fusion for Two-stage 3D Object Detection [11.962073589763676]
Existing 3D detectors significantly improve the accuracy by adopting a two-stage paradigm.
The sparsity of point clouds, especially for the points far away, makes it difficult for the LiDAR-only refinement module to accurately recognize and locate objects.
We propose a novel multi-modality two-stage approach named FusionRCNN, which effectively and efficiently fuses point clouds and camera images in the Regions of Interest(RoI)
FusionRCNN significantly improves the strong SECOND baseline by 6.14% mAP on baseline, and outperforms competing two-stage approaches.
arXiv Detail & Related papers (2022-09-22T02:07:25Z) - MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth
Seeds for 3D Object Detection [89.26380781863665]
Fusing LiDAR and camera information is essential for achieving accurate and reliable 3D object detection in autonomous driving systems.
Recent approaches aim at exploring the semantic densities of camera features through lifting points in 2D camera images into 3D space for fusion.
We propose a novel framework that focuses on the multi-scale progressive interaction of the multi-granularity LiDAR and camera features.
arXiv Detail & Related papers (2022-09-07T12:29:29Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Dense Voxel Fusion for 3D Object Detection [10.717415797194896]
Voxel Fusion (DVF) is a sequential fusion method that generates multi-scale dense voxel feature representations.
We train directly with ground truth 2D bounding box labels, avoiding noisy, detector-specific, 2D predictions.
We show that our proposed multi-modal training strategy results in better generalization compared to training using erroneous 2D predictions.
arXiv Detail & Related papers (2022-03-02T04:51:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.