Scalable Hypergraph Structure Learning with Diverse Smoothness Priors
- URL: http://arxiv.org/abs/2504.03583v1
- Date: Fri, 04 Apr 2025 16:47:30 GMT
- Title: Scalable Hypergraph Structure Learning with Diverse Smoothness Priors
- Authors: Benjamin T. Brown, Haoxiang Zhang, Daniel L. Lau, Gonzalo R. Arce,
- Abstract summary: We propose a novel hypergraph learning method that recovers a hypergraph from time-series signals based on a smoothness prior.<n>We show improved performance, in terms of accuracy, over other state-of-the-art hypergraph inference methods.
- Score: 7.559720049837459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In graph signal processing, learning the weighted connections between nodes from a set of sample signals is a fundamental task when the underlying relationships are not known a priori. This task is typically addressed by finding a graph Laplacian on which the observed signals are smooth. With the extension of graphs to hypergraphs - where edges can connect more than two nodes - graph learning methods have similarly been generalized to hypergraphs. However, the absence of a unified framework for calculating total variation has led to divergent definitions of smoothness and, consequently, differing approaches to hyperedge recovery. We confront this challenge through generalization of several previously proposed hypergraph total variations, subsequently allowing ease of substitution into a vector based optimization. To this end, we propose a novel hypergraph learning method that recovers a hypergraph topology from time-series signals based on a smoothness prior. Our approach addresses key limitations in prior works, such as hyperedge selection and convergence issues, by formulating the problem as a convex optimization solved via a forward-backward-forward algorithm, ensuring guaranteed convergence. Additionally, we introduce a process that simultaneously limits the span of the hyperedge search and maintains a valid hyperedge selection set. In doing so, our method becomes scalable in increasingly complex network structures. The experimental results demonstrate improved performance, in terms of accuracy, over other state-of-the-art hypergraph inference methods; furthermore, we empirically show our method to be robust to total variation terms, biased towards global smoothness, and scalable to larger hypergraphs.
Related papers
- SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
We introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way.
We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures.
The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network.
arXiv Detail & Related papers (2024-10-04T07:49:57Z) - Disentangled Representation Learning with the Gromov-Monge Gap [65.73194652234848]
Learning disentangled representations from unlabelled data is a fundamental challenge in machine learning.
We introduce a novel approach to disentangled representation learning based on quadratic optimal transport.
We demonstrate the effectiveness of our approach for quantifying disentanglement across four standard benchmarks.
arXiv Detail & Related papers (2024-07-10T16:51:32Z) - Hypergraph Structure Inference From Data Under Smoothness Prior [41.43504601820411]
We propose a method to infer the probability for each potential hyperedge without labelled data as supervision.<n>We use this prior to derive the relation between the hypergraph structure and the node features via probabilistic modelling.<n> Experiments on both synthetic and real-world data demonstrate that our method can learn meaningful hypergraph structures from data more efficiently than existing hypergraph structure inference methods.
arXiv Detail & Related papers (2023-08-27T18:28:58Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Accelerated Graph Learning from Smooth Signals [10.426964757656743]
A fast dual-based proximal gradient algorithm is developed to tackle a strongly convex, smoothness-regularized network inverse problem.
Unlike existing solvers, the novel iterations come with global convergence rate guarantees and do not require additional step-size tuning.
arXiv Detail & Related papers (2021-10-19T01:02:57Z) - HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering [9.438207505148947]
We propose an efficient spectral hypergraph coarsening scheme (HyperSF) for preserving the original spectral (structural) properties of hypergraphs.
Our results show that the proposed hypergraph coarsening algorithm can significantly improve the multi-way conductance of hypergraph clustering.
arXiv Detail & Related papers (2021-08-17T22:20:23Z) - Multilayer Graph Clustering with Optimized Node Embedding [70.1053472751897]
multilayer graph clustering aims at dividing the graph nodes into categories or communities.
We propose a clustering-friendly embedding of the layers of a given multilayer graph.
Experiments show that our method leads to a significant improvement.
arXiv Detail & Related papers (2021-03-30T17:36:40Z) - Community Detection in General Hypergraph via Graph Embedding [1.4213973379473654]
We propose a novel method for detecting community structure in general hypergraph networks, uniform or non-uniform.
The proposed method introduces a null to augment a non-uniform hypergraph into a uniform multi-hypergraph, and then embeds the multi-hypergraph in a low-dimensional vector space.
arXiv Detail & Related papers (2021-03-28T03:23:03Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
We propose an offline method that relies on the concept of graph signal stationarity.
Our detector comes with a proof of a non-asymptotic inequality oracle.
arXiv Detail & Related papers (2020-06-18T15:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.