論文の概要: VISTA-OCR: Towards generative and interactive end to end OCR models
- arxiv url: http://arxiv.org/abs/2504.03621v1
- Date: Fri, 04 Apr 2025 17:39:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:48:01.282866
- Title: VISTA-OCR: Towards generative and interactive end to end OCR models
- Title(参考訳): VISTA-OCR:生成・対話型OCRモデルを目指して
- Authors: Laziz Hamdi, Amine Tamasna, Pascal Boisson, Thierry Paquet,
- Abstract要約: VISTA-OCRは、単一の生成モデル内でテキストの検出と認識を統合する軽量アーキテクチャである。
エンコーダ-デコーダアーキテクチャに基づいて構築されたVISTA-OCRは、視覚的特徴抽出フェーズから始まり、徐々に訓練される。
モデルの性能を高めるために、バウンディングボックスアノテーションと合成サンプルで強化された実世界のサンプルからなる新しいデータセットを構築した。
- 参考スコア(独自算出の注目度): 3.7548609506798494
- License:
- Abstract: We introduce \textbf{VISTA-OCR} (Vision and Spatially-aware Text Analysis OCR), a lightweight architecture that unifies text detection and recognition within a single generative model. Unlike conventional methods that require separate branches with dedicated parameters for text recognition and detection, our approach leverages a Transformer decoder to sequentially generate text transcriptions and their spatial coordinates in a unified branch. Built on an encoder-decoder architecture, VISTA-OCR is progressively trained, starting with the visual feature extraction phase, followed by multitask learning with multimodal token generation. To address the increasing demand for versatile OCR systems capable of advanced tasks, such as content-based text localization \ref{content_based_localization}, we introduce new prompt-controllable OCR tasks during pre-training.To enhance the model's capabilities, we built a new dataset composed of real-world examples enriched with bounding box annotations and synthetic samples. Although recent Vision Large Language Models (VLLMs) can efficiently perform these tasks, their high computational cost remains a barrier for practical deployment. In contrast, our VISTA$_{\text{omni}}$ variant processes both handwritten and printed documents with only 150M parameters, interactively, by prompting. Extensive experiments on multiple datasets demonstrate that VISTA-OCR achieves better performance compared to state-of-the-art specialized models on standard OCR tasks while showing strong potential for more sophisticated OCR applications, addressing the growing need for interactive OCR systems. All code and annotations for VISTA-OCR will be made publicly available upon acceptance.
- Abstract(参考訳): 本稿では,単一生成モデル内でテキストの検出と認識を統一する軽量アーキテクチャであるtextbf{VISTA-OCR(Vision and Spatially-Aware Text Analysis OCR)を紹介する。
テキスト認識と検出のための専用パラメータを持つ分岐を必要とする従来の手法とは異なり,本手法ではトランスフォーマーデコーダを用いてテキストの書き起こしと空間座標を逐次生成する。
エンコーダ-デコーダアーキテクチャに基づいて構築されたVISTA-OCRは、視覚的特徴抽出フェーズから始まり、マルチタスク学習とマルチモーダルトークン生成という段階的に訓練されている。
コンテンツベースのテキストローカライゼーション \ref{content_based_localization} のような高度なタスクが可能な汎用型 OCR システムに対する需要の増加に対応するため,事前学習中に新しいプロンプト制御可能な OCR タスクを導入する。
近年のVision Large Language Models (VLLM) はこれらのタスクを効率的に行うことができるが、その高い計算コストは実用的展開の障壁である。
対照的に、VISTA$_{\text{omni}}$ variant process both hand written and print document with only 150M parameters, interactively by prompting。
複数のデータセットに対する大規模な実験により、VISTA-OCRは標準的なOCRタスクの最先端の特殊モデルと比較してパフォーマンスが向上し、さらに高度なOCRアプリケーションの可能性を示し、インタラクティブなOCRシステムの必要性の高まりに対処している。
VISTA-OCRのすべてのコードとアノテーションは、受理時に公開される。
関連論文リスト
- VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding [18.609441902943445]
VisFocusは、視覚エンコーダのキャパシティを言語プロンプトと直接結合することにより、OCRフリーな手法である。
視覚的エンコーダに入力された文書テキストのスニペットに言語マスキングを用いて,アーキテクチャ拡張と新たな事前学習タスクを組み合わせた。
我々の実験は、このプロンプト誘導型視覚符号化アプローチが性能を著しく向上させることを示した。
論文 参考訳(メタデータ) (2024-07-17T14:16:46Z) - CREPE: Coordinate-Aware End-to-End Document Parser [13.530212337717515]
視覚文書理解のためのOCRフリーシーケンス生成モデル(VDU)を定式化する。
本モデルは,文書画像からテキストを解析するだけでなく,マルチヘッドアーキテクチャに基づくテキストの空間座標も抽出する。
コーディネート・アウェア・エンド・ツー・エンドドキュメンテーション(Coordinate-aware End-to-end Document)と呼ばれる。
CREPEでは,OCRテキスト用の特別なトークンを導入することで,これらの機能を独自に統合する。
論文 参考訳(メタデータ) (2024-05-01T00:30:13Z) - DLoRA-TrOCR: Mixed Text Mode Optical Character Recognition Based On Transformer [12.966765239586994]
マルチフォント、混合シーン、複雑なレイアウトは、従来のOCRモデルの認識精度に深刻な影響を及ぼす。
本稿では,事前学習したOCR変換器,すなわちDLoRA-TrOCRに基づくパラメータ効率の良い混合テキスト認識手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T09:28:16Z) - Text-Conditioned Resampler For Long Form Video Understanding [94.81955667020867]
トレーニング済みのビジュアルエンコーダと大言語モデル(LLM)を用いたテキストコンディショニングビデオリサンプラー(TCR)モジュールを提案する。
TCRは、最適化された実装なしで、平易な注意で一度に100フレーム以上を処理できる。
論文 参考訳(メタデータ) (2023-12-19T06:42:47Z) - EfficientOCR: An Extensible, Open-Source Package for Efficiently
Digitizing World Knowledge [1.8434042562191815]
EffOCRは、オープンソースの光文字認識(OCR)パッケージである。
これは、大規模にテキストを解放するための計算とサンプルの効率の要求を満たす。
EffOCRは安価で、トレーニングにはサンプルの効率がよい。
論文 参考訳(メタデータ) (2023-10-16T04:20:16Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
文書理解とは、ウェブページのようなデジタル文書から自動的に情報を抽出し、分析し、理解することである。
既存のMLLM(Multi-model Large Language Models)は、浅いOCRフリーテキスト認識において、望ましくないゼロショット機能を実証している。
論文 参考訳(メタデータ) (2023-07-04T11:28:07Z) - Donut: Document Understanding Transformer without OCR [17.397447819420695]
我々は,OCRフレームワークを基盤にすることなく,エンドツーエンドのトレーニングが可能な新しいVDUモデルを提案する。
提案手法は,公開ベンチマークデータセットとプライベート産業サービスデータセットの各種文書理解タスクにおける最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-11-30T18:55:19Z) - TrOCR: Transformer-based Optical Character Recognition with Pre-trained
Models [47.48019831416665]
本稿では,事前学習した画像変換器とテキスト変換器モデル,すなわちTrOCRを用いたエンドツーエンドのテキスト認識手法を提案する。
TrOCRは単純だが効果的であり、大規模な合成データで事前訓練し、人間のラベル付きデータセットで微調整することができる。
実験により、TrOCRモデルは、印刷されたテキスト認識タスクと手書きのテキスト認識タスクの両方において、現在の最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-09-21T16:01:56Z) - Rethinking Text Line Recognition Models [57.47147190119394]
2つのデコーダファミリー(コネクショニスト時間分類と変換器)と3つのエンコーダモジュール(双方向LSTM、自己認識、GRCL)を考える。
広く使用されているシーンと手書きテキストの公開データセットの精度とパフォーマンスを比較します。
より一般的なTransformerベースのモデルとは異なり、このアーキテクチャは任意の長さの入力を処理できる。
論文 参考訳(メタデータ) (2021-04-15T21:43:13Z) - Structured Multimodal Attentions for TextVQA [57.71060302874151]
上述の2つの問題を主に解決するために,終端から終端までの構造化マルチモーダルアテンション(SMA)ニューラルネットワークを提案する。
SMAはまず、画像に現れるオブジェクト・オブジェクト・オブジェクト・テキスト・テキストの関係を符号化するために構造グラフ表現を使用し、その後、それを推論するためにマルチモーダルグラフアテンションネットワークを設計する。
提案モデルでは,テキストVQAデータセットとST-VQAデータセットの2つのタスクを事前学習ベースTAP以外のモデルで比較した。
論文 参考訳(メタデータ) (2020-06-01T07:07:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。