論文の概要: CREPE: Coordinate-Aware End-to-End Document Parser
- arxiv url: http://arxiv.org/abs/2405.00260v1
- Date: Wed, 1 May 2024 00:30:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:47:02.560824
- Title: CREPE: Coordinate-Aware End-to-End Document Parser
- Title(参考訳): CREPE: コーディネート対応のエンドツーエンドドキュメントパーザ
- Authors: Yamato Okamoto, Youngmin Baek, Geewook Kim, Ryota Nakao, DongHyun Kim, Moon Bin Yim, Seunghyun Park, Bado Lee,
- Abstract要約: 視覚文書理解のためのOCRフリーシーケンス生成モデル(VDU)を定式化する。
本モデルは,文書画像からテキストを解析するだけでなく,マルチヘッドアーキテクチャに基づくテキストの空間座標も抽出する。
コーディネート・アウェア・エンド・ツー・エンドドキュメンテーション(Coordinate-aware End-to-end Document)と呼ばれる。
CREPEでは,OCRテキスト用の特別なトークンを導入することで,これらの機能を独自に統合する。
- 参考スコア(独自算出の注目度): 13.530212337717515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we formulate an OCR-free sequence generation model for visual document understanding (VDU). Our model not only parses text from document images but also extracts the spatial coordinates of the text based on the multi-head architecture. Named as Coordinate-aware End-to-end Document Parser (CREPE), our method uniquely integrates these capabilities by introducing a special token for OCR text, and token-triggered coordinate decoding. We also proposed a weakly-supervised framework for cost-efficient training, requiring only parsing annotations without high-cost coordinate annotations. Our experimental evaluations demonstrate CREPE's state-of-the-art performances on document parsing tasks. Beyond that, CREPE's adaptability is further highlighted by its successful usage in other document understanding tasks such as layout analysis, document visual question answering, and so one. CREPE's abilities including OCR and semantic parsing not only mitigate error propagation issues in existing OCR-dependent methods, it also significantly enhance the functionality of sequence generation models, ushering in a new era for document understanding studies.
- Abstract(参考訳): 本研究では,視覚文書理解(VDU)のためのOCRフリーシーケンス生成モデルを定式化する。
本モデルは,文書画像からテキストを解析するだけでなく,マルチヘッドアーキテクチャに基づくテキストの空間座標も抽出する。
コーディネート・アウェア・エンド・ツー・エンド・ドキュメント・パーサ (CREPE) と呼ばれるこの手法は,OCRテキスト用の特別なトークンを導入し,トークントリガーによる座標デコーディングを導入することによって,これらの機能を一意に統合する。
また、コスト効率向上のための弱教師付きフレームワークを提案し、高コストの座標アノテーションを使わずにアノテーションを解析する必要があった。
文書解析タスクにおけるCREPEの最先端性能を実験的に評価した。
さらに、CREPEの適応性は、レイアウト分析、文書の視覚的質問応答など、他の文書理解タスクでの成功によってさらに強調される。
OCRや意味解析などのCREPEの能力は、既存のOCR依存手法におけるエラー伝播問題を緩和するだけでなく、シーケンス生成モデルの機能を著しく向上させ、文書理解研究の新しい時代へと導いた。
関連論文リスト
- VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding [18.609441902943445]
VisFocusは、視覚エンコーダのキャパシティを言語プロンプトと直接結合することにより、OCRフリーな手法である。
視覚的エンコーダに入力された文書テキストのスニペットに言語マスキングを用いて,アーキテクチャ拡張と新たな事前学習タスクを組み合わせた。
我々の実験は、このプロンプト誘導型視覚符号化アプローチが性能を著しく向上させることを示した。
論文 参考訳(メタデータ) (2024-07-17T14:16:46Z) - OmniParser: A Unified Framework for Text Spotting, Key Information Extraction and Table Recognition [79.852642726105]
多様なシナリオにまたがって視覚的なテキストを解析するための統一パラダイムを提案する。
具体的には,3つの視覚的なテキスト解析タスクを同時に処理できるOmniというユニバーサルモデルを提案する。
オムニでは、全てのタスクが統一エンコーダ・デコーダアーキテクチャ、統一目的点条件テキスト生成、統一入力表現を共有している。
論文 参考訳(メタデータ) (2024-03-28T03:51:14Z) - Visually Guided Generative Text-Layout Pre-training for Document Intelligence [51.09853181377696]
視覚誘導型生成テキスト事前学習(ViTLP)を提案する。
文書画像が与えられた場合、モデルは階層言語とレイアウトモデリングの目的を最適化し、インターリーブされたテキストとレイアウトシーケンスを生成する。
ViTLPは、文書画像のテキストをローカライズし、認識するためのネイティブなOCRモデルとして機能する。
論文 参考訳(メタデータ) (2024-03-25T08:00:43Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
文書理解とは、ウェブページのようなデジタル文書から自動的に情報を抽出し、分析し、理解することである。
既存のMLLM(Multi-model Large Language Models)は、浅いOCRフリーテキスト認識において、望ましくないゼロショット機能を実証している。
論文 参考訳(メタデータ) (2023-07-04T11:28:07Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
Transformerアーキテクチャを用いた問合せベースのエンドツーエンドテキストスポッターであるTextFormerを提案する。
TextFormerは、画像エンコーダとテキストデコーダの上に構築され、マルチタスクモデリングのための共同セマンティック理解を学ぶ。
分類、セグメンテーション、認識のブランチの相互訓練と最適化を可能にし、より深い特徴共有をもたらす。
論文 参考訳(メタデータ) (2023-06-06T03:37:41Z) - SelfDocSeg: A Self-Supervised vision-based Approach towards Document
Segmentation [15.953725529361874]
文書レイアウト分析は文書研究コミュニティにとって既知の問題である。
個人生活へのインターネット接続が拡大するにつれ、パブリックドメインでは膨大な量のドキュメントが利用できるようになった。
我々は,この課題に自己監督型文書セグメンテーションアプローチと異なり,自己監督型文書セグメンテーションアプローチを用いて対処する。
論文 参考訳(メタデータ) (2023-05-01T12:47:55Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
文書理解のための統合事前学習フレームワークであるUDocを紹介する。
UDocは、ほとんどのドキュメント理解タスクをサポートするように設計されており、Transformerを拡張してマルチモーダル埋め込みを入力とする。
UDocの重要な特徴は、3つの自己管理的損失を利用して汎用的な表現を学ぶことである。
論文 参考訳(メタデータ) (2022-04-22T21:47:04Z) - One-shot Key Information Extraction from Document with Deep Partial
Graph Matching [60.48651298832829]
ドキュメントからキー情報抽出(KIE)は、多くの産業シナリオにおいて効率、生産性、セキュリティを改善する。
KIEタスクのための既存の教師付き学習手法は、多数のラベル付きサンプルを供給し、異なる種類の文書の別々のモデルを学ぶ必要がある。
部分グラフマッチングを用いたワンショットKIEのためのディープエンド・ツー・エンド・トレーニング可能なネットワークを提案する。
論文 参考訳(メタデータ) (2021-09-26T07:45:53Z) - Selective Attention Encoders by Syntactic Graph Convolutional Networks
for Document Summarization [21.351111598564987]
本稿では,文書中の文から解析木を接続するグラフを提案し,文書の構文表現を学習するために重ねられたグラフ畳み込みネットワーク(GCN)を利用する。
提案したGCNによる選択的アテンションアプローチは,ベースラインよりも優れ,データセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-03-18T01:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。