論文の概要: Process Optimization and Deployment for Sensor-Based Human Activity Recognition Based on Deep Learning
- arxiv url: http://arxiv.org/abs/2504.03687v1
- Date: Sat, 22 Mar 2025 16:48:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-20 18:45:39.491274
- Title: Process Optimization and Deployment for Sensor-Based Human Activity Recognition Based on Deep Learning
- Title(参考訳): 深層学習に基づくセンサに基づく人間活動認識のためのプロセス最適化と展開
- Authors: Hanyu Liu, Ying Yu, Hang Xiao, Siyao Li, Xuze Li, Jiarui Li, Haotian Tang,
- Abstract要約: 本稿では,マルチアテンションインタラクションを中心とした包括的な最適化プロセスを提案する。
我々は、アブレーション研究、関連する作業の比較、組み込みデプロイメントを含む3つの公開データセットで広範なテストを行います。
- 参考スコア(独自算出の注目度): 9.445469731895505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sensor-based human activity recognition is a key technology for many human-centered intelligent applications. However, this research is still in its infancy and faces many unresolved challenges. To address these, we propose a comprehensive optimization process approach centered on multi-attention interaction. We first utilize unsupervised statistical feature-guided diffusion models for highly adaptive data enhancement, and introduce a novel network architecture-Multi-branch Spatiotemporal Interaction Network, which uses multi-branch features at different levels to effectively Sequential ), which uses multi-branch features at different levels to effectively Sequential spatio-temporal interaction to enhance the ability to mine advanced latent features. In addition, we adopt a multi-loss function fusion strategy in the training phase to dynamically adjust the fusion weights between batches to optimize the training results. Finally, we also conducted actual deployment on embedded devices to extensively test the practical feasibility of the proposed method in existing work. We conduct extensive testing on three public datasets, including ablation studies, comparisons of related work, and embedded deployments.
- Abstract(参考訳): センサに基づく人間の活動認識は多くの人間中心のインテリジェントなアプリケーションにとって重要な技術である。
しかし、この研究はまだ初期段階にあり、未解決の課題が数多く抱えられている。
そこで本稿では,マルチアテンションインタラクションを主眼とした包括的な最適化プロセスを提案する。
本稿では、まず、教師なし統計特徴誘導拡散モデルを用いて高度適応データ強調を行い、複数の階層のマルチブランチ特徴を効果的に活用する新しいネットワークアーキテクチャ(マルチブランチ時空間相互作用ネットワーク)を導入し、複数の階層のマルチブランチ特徴を効果的に活用し、逐次時空間相互作用を効果的に活用し、遅延特徴をマイニングする能力を高める。
さらに、トレーニングフェーズにマルチロス関数融合戦略を採用し、バッチ間の融合重みを動的に調整し、トレーニング結果を最適化する。
最後に, 本手法の有効性を実証するため, 組込み装置への実際の展開を行った。
我々は、アブレーション研究、関連する作業の比較、組み込みデプロイメントを含む3つの公開データセットで広範なテストを行います。
関連論文リスト
- Comprehend, Divide, and Conquer: Feature Subspace Exploration via Multi-Agent Hierarchical Reinforcement Learning [10.317489871533565]
本稿では,複雑なデータセットに対する強化学習に基づく部分空間探索戦略であるHRLFSを紹介する。
HRLFSは、反復的な特徴空間探索により、下流機械学習性能を向上させる。
また,HRLFSは関与するエージェントの数を減らし,総実行時間を短縮することを示した。
論文 参考訳(メタデータ) (2025-04-24T08:16:36Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - ICAFusion: Iterative Cross-Attention Guided Feature Fusion for
Multispectral Object Detection [25.66305300362193]
大域的特徴相互作用をモデル化するために、二重対向変換器の新たな特徴融合フレームワークを提案する。
このフレームワークは、クエリ誘導のクロスアテンション機構を通じて、オブジェクトの特徴の識別性を高める。
提案手法は,様々なシナリオに適した性能と高速な推論を実現する。
論文 参考訳(メタデータ) (2023-08-15T00:02:10Z) - Multimodal Multi-loss Fusion Network for Sentiment Analysis [3.8611070161950902]
本稿では,複数のモードにまたがる特徴エンコーダの最適選択と融合について検討し,感情検出を改善する。
我々は、異なる融合法を比較し、マルチモダリティ融合ネットワークにおけるマルチロストレーニングの影響について検討する。
コンテキストの統合はモデルの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-08-01T03:54:27Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
本稿では,入力モーダル性と出力タスクを関連付けた冗長性,特異性,シナジーの度合いを定量化する情報理論手法を提案する。
PID推定を検証するために、PIDが知られている合成データセットと大規模マルチモーダルベンチマークの両方で広範な実験を行う。
本研究では,(1)マルチモーダルデータセット内の相互作用の定量化,(2)マルチモーダルモデルで捉えた相互作用の定量化,(3)モデル選択の原理的アプローチ,(4)実世界のケーススタディの3つにその有用性を示す。
論文 参考訳(メタデータ) (2023-02-23T18:59:05Z) - Offline Reinforcement Learning with Differentiable Function
Approximation is Provably Efficient [65.08966446962845]
歴史的データを用いて意思決定戦略を最適化することを目的としたオフライン強化学習は、現実の応用に広く適用されている。
微分関数クラス近似(DFA)を用いたオフライン強化学習の検討から一歩踏み出した。
最も重要なことは、悲観的な適合Q-ラーニングアルゴリズムを解析することにより、オフライン微分関数近似が有効であることを示すことである。
論文 参考訳(メタデータ) (2022-10-03T07:59:42Z) - Sparse Interaction Additive Networks via Feature Interaction Detection
and Sparse Selection [10.191597755296163]
我々は,必要な特徴の組み合わせを効率的に識別する,抽出可能な選択アルゴリズムを開発した。
提案するスパース・インタラクション・アダプティブ・ネットワーク(SIAN)は,単純かつ解釈可能なモデルから完全に接続されたニューラルネットワークへのブリッジを構築する。
論文 参考訳(メタデータ) (2022-09-19T19:57:17Z) - Interactive Multi-scale Fusion of 2D and 3D Features for Multi-object
Tracking [23.130490413184596]
我々は、PointNet++を導入し、ポイントクラウドのマルチスケールのディープ表現を取得し、提案したInteractive Feature Fusionに適応させる。
提案手法は,KITTIベンチマークにおいて,マルチスケールな特徴融合を使わずに優れた性能を実現し,他の手法よりも優れる。
論文 参考訳(メタデータ) (2022-03-30T13:00:27Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Neural Dependency Coding inspired Multimodal Fusion [11.182263394122142]
近年のニューラルネットワークによる深層融合モデルの研究は、音声認識、感情認識、分析、キャプション、画像記述などの分野で大幅に改善されている。
近年の多感覚統合と処理に関する神経科学の考え方に触発され,シナジー最大化損失関数の効果について検討した。
論文 参考訳(メタデータ) (2021-09-28T17:52:09Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Centralized Information Interaction for Salient Object Detection [68.8587064889475]
U字型構造は、多スケールの機能を効率的に組み合わせるサリエント物体検出に長けている。
本稿では,これらの接続を集中化することにより,相互に相互に情報交換を行うことができることを示す。
本手法は, ボトムアップ経路とトップダウン経路の接続を置換することにより, 既存のU字型サルエント物体検出手法と協調することができる。
論文 参考訳(メタデータ) (2020-12-21T12:42:06Z) - FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data [106.76845921324704]
本稿では,FIVES (Feature Interaction Via Edge Search) という新しい手法を提案する。
FIVESは、定義された特徴グラフ上のエッジを探すために、インタラクティブな特徴生成のタスクを定式化する。
本稿では,対話的特徴の探索を動機づける理論的証拠を提示する。
論文 参考訳(メタデータ) (2020-07-29T03:33:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。