SAFE: Self-Adjustment Federated Learning Framework for Remote Sensing Collaborative Perception
- URL: http://arxiv.org/abs/2504.03700v1
- Date: Tue, 25 Mar 2025 06:39:34 GMT
- Title: SAFE: Self-Adjustment Federated Learning Framework for Remote Sensing Collaborative Perception
- Authors: Xiaohe Li, Haohua Wu, Jiahao Li, Zide Fan, Kaixin Zhang, Xinming Li, Yunping Ge, Xinyu Zhao,
- Abstract summary: Existing distributed remote sensing models often rely on centralized training, resulting in data leakage, communication overhead, and reduced accuracy.<n>We propose the textitSelf-Adjustment FEderated Learning framework to enhance collaborative sensing in remote sensing scenarios.
- Score: 12.303730216612877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid increase in remote sensing satellites has led to the emergence of distributed space-based observation systems. However, existing distributed remote sensing models often rely on centralized training, resulting in data leakage, communication overhead, and reduced accuracy due to data distribution discrepancies across platforms. To address these challenges, we propose the \textit{Self-Adjustment FEderated Learning} (SAFE) framework, which innovatively leverages federated learning to enhance collaborative sensing in remote sensing scenarios. SAFE introduces four key strategies: (1) \textit{Class Rectification Optimization}, which autonomously addresses class imbalance under unknown local and global distributions. (2) \textit{Feature Alignment Update}, which mitigates Non-IID data issues via locally controlled EMA updates. (3) \textit{Dual-Factor Modulation Rheostat}, which dynamically balances optimization effects during training. (4) \textit{Adaptive Context Enhancement}, which is designed to improve model performance by dynamically refining foreground regions, ensuring computational efficiency with accuracy improvement across distributed satellites. Experiments on real-world image classification and object segmentation datasets validate the effectiveness and reliability of the SAFE framework in complex remote sensing scenarios.
Related papers
- Few-Shot Class-Incremental Learning For Efficient SAR Automatic Target Recognition [13.783950035836593]
We propose a few-shot class-incremental learning (FSCIL) framework based on a dual-branch architecture that focuses on local feature extraction.<n>This incorporates a lightweight cross-attention mechanism that fuses domain-specific features with global dependencies to ensure robust feature interaction.<n> Experimental results on the MSTAR benchmark dataset demonstrate that the proposed framework consistently outperforms state-of-the-art methods in FSCIL SAR-ATR.
arXiv Detail & Related papers (2025-05-26T06:25:30Z) - DRIVE: Dual-Robustness via Information Variability and Entropic Consistency in Source-Free Unsupervised Domain Adaptation [10.127634263641877]
Adapting machine learning models to new domains without labeled data is a critical challenge in applications like medical imaging, autonomous driving, and remote sensing.<n>This task, known as Source-Free Unsupervised Domain Adaptation (SFUDA), involves adapting a pre-trained model to a target domain using only unlabeled target data.<n>Existing SFUDA methods often rely on single-model architectures, struggling with uncertainty and variability in the target domain.<n>We propose DRIVE, a novel SFUDA framework leveraging a dual-model architecture. The two models, with identical weights, work in parallel to capture diverse target domain characteristics.
arXiv Detail & Related papers (2024-11-24T20:35:04Z) - Modality Alignment Meets Federated Broadcasting [9.752555511824593]
Federated learning (FL) has emerged as a powerful approach to safeguard data privacy by training models across distributed edge devices without centralizing local data.
This paper introduces a novel FL framework leveraging modality alignment, where a text encoder resides on the server, and image encoders operate on local devices.
arXiv Detail & Related papers (2024-11-24T13:30:03Z) - Cross-Modal Pre-Aligned Method with Global and Local Information for Remote-Sensing Image and Text Retrieval [16.995114000869833]
We propose CMPAGL, a cross-modal pre-aligned method leveraging global and local information.
Our Gswin transformer block combines local window self-attention and global-local window cross-attention to capture multi-scale features.
Experiments on four datasets, including RSICD and RSITMD, validate CMPAGL's effectiveness.
arXiv Detail & Related papers (2024-11-22T03:28:55Z) - Logit Calibration and Feature Contrast for Robust Federated Learning on Non-IID Data [45.11652096723593]
Federated learning (FL) is a privacy-preserving distributed framework for collaborative model training on devices in edge networks.
This paper proposes FatCC, which incorporates local logit underlineCalibration and global feature underlineContrast into the vanilla federated adversarial training process from both logit and feature perspectives.
arXiv Detail & Related papers (2024-04-10T06:35:25Z) - Smart Information Exchange for Unsupervised Federated Learning via
Reinforcement Learning [11.819765040106185]
We propose an approach to create an optimal graph for data transfer using Reinforcement Learning.
The goal is to form links that will provide the most benefit considering the environment's constraints.
Numerical analysis shows the advantages in terms of convergence speed and straggler resilience of the proposed method.
arXiv Detail & Related papers (2024-02-15T00:14:41Z) - Adaptive Global-Local Representation Learning and Selection for
Cross-Domain Facial Expression Recognition [54.334773598942775]
Domain shift poses a significant challenge in Cross-Domain Facial Expression Recognition (CD-FER)
We propose an Adaptive Global-Local Representation Learning and Selection framework.
arXiv Detail & Related papers (2024-01-20T02:21:41Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z) - Unsupervised Domain Adaptation for Speech Recognition via Uncertainty
Driven Self-Training [55.824641135682725]
Domain adaptation experiments using WSJ as a source domain and TED-LIUM 3 as well as SWITCHBOARD show that up to 80% of the performance of a system trained on ground-truth data can be recovered.
arXiv Detail & Related papers (2020-11-26T18:51:26Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.