論文の概要: DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
- arxiv url: http://arxiv.org/abs/2503.09956v2
- Date: Wed, 19 Mar 2025 01:32:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 12:01:10.910125
- Title: DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
- Title(参考訳): ディープシークによるRL型LLMの探索と無線ネットワークとの相乗効果:サーベイ
- Authors: Yu Qiao, Phuong-Nam Tran, Ji Su Yoon, Loc X. Nguyen, Choong Seon Hong,
- Abstract要約: 強化学習(RL)に基づく大規模言語モデル(LLM)が注目されている。
無線ネットワークは、RLベースのLLMの強化を必要とする。
無線ネットワークは、RLベースのLLMの効率的なトレーニング、デプロイメント、分散推論のための重要な基盤を提供する。
- 参考スコア(独自算出の注目度): 27.386915138058416
- License:
- Abstract: Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have gained significant attention for their exceptional capabilities in natural language processing and multimodal data understanding. Meanwhile, the rapid expansion of information services has driven the growing need for intelligence, efficient, and adaptable wireless networks. Wireless networks require the empowerment of RL-based LLMs while these models also benefit from wireless networks to broaden their application scenarios. Specifically, RL-based LLMs can enhance wireless communication systems through intelligent resource allocation, adaptive network optimization, and real-time decision-making. Conversely, wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs, especially in decentralized and edge computing environments. This mutual empowerment highlights the need for a deeper exploration of the interplay between these two domains. We first review recent advancements in wireless communications, highlighting the associated challenges and potential solutions. We then discuss the progress of RL-based LLMs, focusing on key technologies for LLM training, challenges, and potential solutions. Subsequently, we explore the mutual empowerment between these two fields, highlighting key motivations, open challenges, and potential solutions. Finally, we provide insights into future directions, applications, and their societal impact to further explore this intersection, paving the way for next-generation intelligent communication systems. Overall, this survey provides a comprehensive overview of the relationship between RL-based LLMs and wireless networks, offering a vision where these domains empower each other to drive innovations.
- Abstract(参考訳): 強化学習(RL)に基づく大規模言語モデル(ChatGPT、DeepSeek、Grok-3)は、自然言語処理やマルチモーダルデータ理解における例外的な能力において大きな注目を集めている。
一方、情報サービスの急速な拡大により、インテリジェンス、効率的、適応可能な無線ネットワークの必要性が高まっている。
無線ネットワークは、RLベースのLLMの強化を必要とするが、これらのモデルは、アプリケーションシナリオを拡張するために、無線ネットワークの恩恵を受ける。
具体的には、RLベースのLLMは、インテリジェントリソース割り当て、適応的ネットワーク最適化、リアルタイム意思決定を通じて、無線通信システムを強化することができる。
逆に、無線ネットワークは、特に分散コンピューティング環境とエッジコンピューティング環境において、RLベースのLLMの効率的なトレーニング、デプロイメント、分散推論のための重要な基盤を提供する。
この相互の権限は、これらの2つのドメイン間の相互作用をより深く探求する必要性を強調している。
我々は、無線通信の最近の進歩を概観し、関連する課題と潜在的な解決策を強調した。
次に,LL ベースの LLM の進歩について論じ,LLM のトレーニング,課題,潜在的なソリューションの鍵となる技術に注目した。
続いて、これらの2つの分野間の相互のエンパワーメントを探求し、主要なモチベーション、オープンチャレンジ、潜在的なソリューションを強調します。
最後に、今後の方向性、応用、社会的影響に関する洞察を提供し、この交差点をさらに探求し、次世代のインテリジェント通信システムへの道を開く。
全体として、この調査は、RLベースのLLMと無線ネットワークの関係を包括的に概観し、これらのドメインが相互にイノベーションを促進するというビジョンを提供する。
関連論文リスト
- A Survey on Large Language Models for Communication, Network, and Service Management: Application Insights, Challenges, and Future Directions [37.427638898804055]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおける非並列性のため、大きな注目を集めている。
本研究では,モバイルネットワークや関連技術,車両ネットワーク,クラウドネットワーク,フォグ/エッジネットワークなど,さまざまな通信ネットワークドメインを対象としたLCMの統合について検討する。
論文 参考訳(メタデータ) (2024-12-16T20:01:36Z) - NetOrchLLM: Mastering Wireless Network Orchestration with Large Language Models [11.015852090523229]
大規模言語モデル(LLM)は、洗練された自然言語理解機能を活用することで、様々な領域に革命をもたらした。
本稿では、様々な無線固有モデルをシームレスにオーケストレーションする無線ネットワークORCHestrator LLMフレームワークであるNetORCHLLMを提案する。
アプローチの実用性を示す包括的なフレームワークが導入された。
論文 参考訳(メタデータ) (2024-12-13T12:48:15Z) - WirelessLLM: Empowering Large Language Models Towards Wireless Intelligence [16.722524706176767]
大規模言語モデル(LLM)は、無線通信システムに革命をもたらす可能性への関心を喚起している。
無線システム用LLMの既存の研究は、通信言語理解の直接的な応用に限られている。
本稿では,無線通信ネットワークのユニークな課題と要件に対処するため,LLMの適応と拡張のための総合的なフレームワークである WirelessLLM を提案する。
論文 参考訳(メタデータ) (2024-05-27T11:18:25Z) - Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings [0.21847754147782888]
大きな言語モデル(LLM)は、言語理解と人間に似たテキスト生成に革命をもたらした。
本稿では,6G(第6世代)無線通信技術におけるLCMの電力利用技術について検討する。
無線通信におけるネットワーク展開にLLMを利用する新しい強化学習(RL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-22T05:19:51Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
無線ネットワークへの展開は、プライバシとセキュリティ保護機構の欠如など、依然として課題に直面している。
通信オーバーヘッドの少ない2つのパーソナライズされた無線フェデレーションファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-04-20T02:30:21Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
効果的な分散機械学習フレームワークとして、フェデレートラーニング(FL)が登場します。
本稿では,ネットワーク設計と資源オーケストレーションの両面から,スケーラブルな無線FLを実現する上での課題と解決策について論じる。
論文 参考訳(メタデータ) (2023-10-08T08:55:03Z) - The Role of Federated Learning in a Wireless World with Foundation Models [59.8129893837421]
ファンデーションモデル(FM)は汎用人工知能(AI)モデルである。
現在、FMと連邦学習(FL)の相互作用の探索はまだ初期段階にある。
本稿では、FMが無線ネットワークよりもFLに適した範囲について検討し、その研究課題と機会について概観する。
論文 参考訳(メタデータ) (2023-10-06T04:13:10Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial [64.77665786141166]
インテリジェント反射面(Intelligent Reflecting Surface、IRS)は、無線ネットワークにおける電波伝搬を工学する技術である。
IRSは無線チャネルを動的に変更して通信性能を向上させることができる。
その大きな可能性にもかかわらず、IRSは無線ネットワークに効率的に統合されるための新たな課題に直面している。
論文 参考訳(メタデータ) (2020-07-06T13:59:09Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。