Control Map Distribution using Map Query Bank for Online Map Generation
- URL: http://arxiv.org/abs/2504.03868v1
- Date: Fri, 04 Apr 2025 18:47:42 GMT
- Title: Control Map Distribution using Map Query Bank for Online Map Generation
- Authors: Ziming Liu, Leichen Wang, Ge Yang, Xinrun Li, Xingtao Hu, Hao Sun, Guangyu Gao,
- Abstract summary: Reliable autonomous driving systems require high-definition (HD) map for planning and navigation.<n>OMG has become an alternative low-cost solution to build a local HD map.<n>OMG learns HD map predictions from an initial map queries distribution.<n>It is important to keep point-level information in map queries when interacting with BEV feature map.
- Score: 18.325267388089696
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reliable autonomous driving systems require high-definition (HD) map that contains detailed map information for planning and navigation. However, pre-build HD map requires a large cost. Visual-based Online Map Generation (OMG) has become an alternative low-cost solution to build a local HD map. Query-based BEV Transformer has been a base model for this task. This model learns HD map predictions from an initial map queries distribution which is obtained by offline optimization on training set. Besides the quality of BEV feature, the performance of this model also highly relies on the capacity of initial map query distribution. However, this distribution is limited because the limited query number. To make map predictions optimal on each test sample, it is essential to generate a suitable initial distribution for each specific scenario. This paper proposes to decompose the whole HD map distribution into a set of point representations, namely map query bank (MQBank). To build specific map query initial distributions of different scenarios, low-cost standard definition map (SD map) data is introduced as a kind of prior knowledge. Moreover, each layer of map decoder network learns instance-level map query features, which will lose detailed information of each point. However, BEV feature map is a point-level dense feature. It is important to keep point-level information in map queries when interacting with BEV feature map. This can also be solved with map query bank method. Final experiments show a new insight on SD map prior and a new record on OpenLaneV2 benchmark with 40.5%, 45.7% mAP on vehicle lane and pedestrian area.
Related papers
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - VQ-Map: Bird's-Eye-View Map Layout Estimation in Tokenized Discrete Space via Vector Quantization [108.68014173017583]
Bird's-eye-view (BEV) map layout estimation requires an accurate and full understanding of the semantics for the environmental elements around the ego car.
We propose to utilize a generative model similar to the Vector Quantized-Variational AutoEncoder (VQ-VAE) to acquire prior knowledge for the high-level BEV semantics in the tokenized discrete space.
Thanks to the obtained BEV tokens accompanied with a codebook embedding encapsulating the semantics for different BEV elements in the groundtruth maps, we are able to directly align the sparse backbone image features with the obtained BEV tokens
arXiv Detail & Related papers (2024-11-03T16:09:47Z) - Enhancing Vectorized Map Perception with Historical Rasterized Maps [37.48510990922406]
We propose HRMapNet, leveraging a low-cost Historical Rasterized Map to enhance online vectorized map perception.
The historicalized map can be easily constructed from past predicted vectorized results and provides valuable complementary information.
HRMapNet can be integrated with most online vectorized map perception methods.
arXiv Detail & Related papers (2024-09-01T05:22:33Z) - Leveraging Enhanced Queries of Point Sets for Vectorized Map Construction [15.324464723174533]
This paper introduces MapQR, an end-to-end method with an emphasis on enhancing query capabilities for constructing online vectorized maps.
MapQR utilizes a novel query design, called scatter-and-gather query, which is modelled by separate content and position parts explicitly.
The proposed MapQR achieves the best mean average precision (mAP) and maintains good efficiency on both nuScenes and Argoverse 2.
arXiv Detail & Related papers (2024-02-27T11:43:09Z) - Mind the map! Accounting for existing map information when estimating online HDMaps from sensor [15.275704436439012]
Estimating HDMaps from sensors promises to significantly lighten costs.
We propose to account for existing maps of the precise situation studied when estimating HDMaps.
We introduce MapEX, a novel online HDMap estimation framework.
arXiv Detail & Related papers (2023-11-17T13:40:10Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) maps are more affordable and have worldwide coverage, offering a scalable alternative.
We propose a novel framework to integrate SD maps into online map prediction and propose a Transformer-based encoder, SD Map Representations from transFormers.
This enhancement consistently and significantly boosts (by up to 60%) lane detection and topology prediction on current state-of-the-art online map prediction methods.
arXiv Detail & Related papers (2023-11-07T15:42:22Z) - NeMO: Neural Map Growing System for Spatiotemporal Fusion in
Bird's-Eye-View and BDD-Map Benchmark [9.430779563669908]
Vision-centric Bird's-Eye View representation is essential for autonomous driving systems.
This work outlines a new paradigm, named NeMO, for generating local maps through the utilization of a readable and writable big map.
With an assumption that the feature distribution of all BEV grids follows an identical pattern, we adopt a shared-weight neural network for all grids to update the big map.
arXiv Detail & Related papers (2023-06-07T15:46:15Z) - Long-term Visual Map Sparsification with Heterogeneous GNN [47.12309045366042]
In this paper, we aim to overcome the environmental changes and reduce the map size at the same time by selecting points that are valuable to future localization.
Inspired by the recent progress in Graph Neural Network(GNN), we propose the first work that models SfM maps as heterogeneous graphs and predicts 3D point importance scores with a GNN.
Two novel supervisions are proposed: 1) a data-fitting term for selecting valuable points to future localization based on training queries; 2) a K-Cover term for selecting sparse points with full map coverage.
arXiv Detail & Related papers (2022-03-29T01:46:12Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HD map construction is a crucial problem for autonomous driving.
Traditional HD maps are coupled with centimeter-level accurate localization which is unreliable in many scenarios.
Online map learning is a more scalable way to provide semantic and geometry priors to self-driving vehicles.
arXiv Detail & Related papers (2021-07-13T18:06:46Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HD maps are maps with precise definitions of road lanes with rich semantics of the traffic rules.
There are only a small amount of real-world road topologies and geometries, which significantly limits our ability to test out the self-driving stack.
We propose HDMapGen, a hierarchical graph generation model capable of producing high-quality and diverse HD maps.
arXiv Detail & Related papers (2021-06-28T17:59:30Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
We show that High-Definition (HD) maps provide strong priors that can boost the performance and robustness of modern 3D object detectors.
We design a single stage detector that extracts geometric and semantic features from the HD maps.
As maps might not be available everywhere, we also propose a map prediction module that estimates the map on the fly from raw LiDAR data.
arXiv Detail & Related papers (2020-12-21T21:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.