Enhancing Vectorized Map Perception with Historical Rasterized Maps
- URL: http://arxiv.org/abs/2409.00620v1
- Date: Sun, 1 Sep 2024 05:22:33 GMT
- Title: Enhancing Vectorized Map Perception with Historical Rasterized Maps
- Authors: Xiaoyu Zhang, Guangwei Liu, Zihao Liu, Ningyi Xu, Yunhui Liu, Ji Zhao,
- Abstract summary: We propose HRMapNet, leveraging a low-cost Historical Rasterized Map to enhance online vectorized map perception.
The historicalized map can be easily constructed from past predicted vectorized results and provides valuable complementary information.
HRMapNet can be integrated with most online vectorized map perception methods.
- Score: 37.48510990922406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, there is growing interest in end-to-end online vectorized map perception in bird's-eye-view (BEV) space, with an expectation that it could replace traditional high-cost offline high-definition (HD) maps. However, the accuracy and robustness of these methods can be easily compromised in challenging conditions, such as occlusion or adverse weather, when relying only on onboard sensors. In this paper, we propose HRMapNet, leveraging a low-cost Historical Rasterized Map to enhance online vectorized map perception. The historical rasterized map can be easily constructed from past predicted vectorized results and provides valuable complementary information. To fully exploit a historical map, we propose two novel modules to enhance BEV features and map element queries. For BEV features, we employ a feature aggregation module to encode features from both onboard images and the historical map. For map element queries, we design a query initialization module to endow queries with priors from the historical map. The two modules contribute to leveraging map information in online perception. Our HRMapNet can be integrated with most online vectorized map perception methods. We integrate it in two state-of-the-art methods, significantly improving their performance on both the nuScenes and Argoverse 2 datasets. The source code is released at https://github.com/HXMap/HRMapNet.
Related papers
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - GenMapping: Unleashing the Potential of Inverse Perspective Mapping for Robust Online HD Map Construction [20.1127163541618]
We have designed a universal map generation framework, GenMapping.
The framework is established with a triadic synergy architecture, including principal and dual auxiliary branches.
A thorough array of experimental results shows that the proposed model surpasses current state-of-the-art methods in both semantic mapping and vectorized mapping, while also maintaining a rapid inference speed.
arXiv Detail & Related papers (2024-09-13T10:15:28Z) - Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
High-Definition Maps (HD maps) are essential for the precise navigation and decision-making of autonomous vehicles.
The online construction of HD maps using on-board sensors has emerged as a promising solution.
This paper proposes the PriorDrive framework to address these limitations by harnessing the power of prior maps.
arXiv Detail & Related papers (2024-09-09T06:17:46Z) - InsMapper: Exploring Inner-instance Information for Vectorized HD
Mapping [41.59891369655983]
InsMapper harnesses inner-instance information for vectorized high-definition mapping through transformers.
InsMapper surpasses the previous state-of-the-art method, demonstrating its effectiveness and generality.
arXiv Detail & Related papers (2023-08-16T17:58:28Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
We introduce a newization-based evaluation metric, which has superior sensitivity and is better suited to real-world autonomous driving scenarios.
We also propose MapVR (Map Vectorization via Rasterization), a novel framework that applies differentiableization to preciseized outputs and then performs geometry-aware supervision on HD maps.
arXiv Detail & Related papers (2023-06-18T08:51:14Z) - VectorMapNet: End-to-end Vectorized HD Map Learning [18.451587680552464]
We introduce an end-to-end vectorized HD map learning pipeline, termed VectorMapNet.
This pipeline can explicitly model the spatial relation between map elements and generate vectorized maps friendly to downstream autonomous driving tasks.
Experiments show that VectorMapNet achieve strong map learning performance on both nuScenes and Argo2 dataset.
arXiv Detail & Related papers (2022-06-17T17:57:13Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HD map construction is a crucial problem for autonomous driving.
Traditional HD maps are coupled with centimeter-level accurate localization which is unreliable in many scenarios.
Online map learning is a more scalable way to provide semantic and geometry priors to self-driving vehicles.
arXiv Detail & Related papers (2021-07-13T18:06:46Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HD maps are maps with precise definitions of road lanes with rich semantics of the traffic rules.
There are only a small amount of real-world road topologies and geometries, which significantly limits our ability to test out the self-driving stack.
We propose HDMapGen, a hierarchical graph generation model capable of producing high-quality and diverse HD maps.
arXiv Detail & Related papers (2021-06-28T17:59:30Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
We show that High-Definition (HD) maps provide strong priors that can boost the performance and robustness of modern 3D object detectors.
We design a single stage detector that extracts geometric and semantic features from the HD maps.
As maps might not be available everywhere, we also propose a map prediction module that estimates the map on the fly from raw LiDAR data.
arXiv Detail & Related papers (2020-12-21T21:59:54Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
This work introduces a novel self-enhancement method to harvest accurate object localization maps and object boundaries with only category labels as supervision.
In particular, the proposed Self-Enhancement Maps achieve the state-of-the-art localization accuracy of 54.88% on ILSVRC.
arXiv Detail & Related papers (2020-06-09T12:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.