A New Approach to Controlling Linear Dynamical Systems
- URL: http://arxiv.org/abs/2504.03952v1
- Date: Fri, 04 Apr 2025 21:37:46 GMT
- Title: A New Approach to Controlling Linear Dynamical Systems
- Authors: Anand Brahmbhatt, Gon Buzaglo, Sofiia Druchyna, Elad Hazan,
- Abstract summary: Our algorithm achieves a running time that scales polylogarithmically with the inverse of the stability margin.<n>The technique, which may be of independent interest, is based on a novel convex relaxation that approximates linear control policies.
- Score: 14.023428539503433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new method for controlling linear dynamical systems under adversarial disturbances and cost functions. Our algorithm achieves a running time that scales polylogarithmically with the inverse of the stability margin, improving upon prior methods with polynomial dependence maintaining the same regret guarantees. The technique, which may be of independent interest, is based on a novel convex relaxation that approximates linear control policies using spectral filters constructed from the eigenvectors of a specific Hankel matrix.
Related papers
- The Power of Learned Locally Linear Models for Nonlinear Policy
Optimization [26.45568696453259]
This paper conducts a rigorous analysis of a simplified variant of this strategy for general nonlinear systems.
We analyze an algorithm which iterates between estimating local linear models of nonlinear system dynamics and performing $mathttiLQR$-like policy updates.
arXiv Detail & Related papers (2023-05-16T17:13:00Z) - Synthesizing Stable Reduced-Order Visuomotor Policies for Nonlinear
Systems via Sums-of-Squares Optimization [28.627377507894003]
We present a method for noise-feedback, reduced-order output-of-control-perception policies for control observations of nonlinear systems.
We show that when these systems from images can fail to reliably stabilize, our approach can provide stability guarantees.
arXiv Detail & Related papers (2023-04-24T19:34:09Z) - Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding [21.38845517949153]
This paper presents an approach, Spectral Dynamics Embedding Control (SDEC), to optimal control for nonlinear systems.
We use an infinite-dimensional feature to linearly represent the state-action value function and exploits finite-dimensional truncation approximation for practical implementation.
arXiv Detail & Related papers (2023-04-08T04:23:46Z) - A New Approach to Learning Linear Dynamical Systems [19.47235707806519]
We provide the first time algorithm for learning a linear dynamical system from a length trajectory up to error in the system parameters.
Our algorithm is built on a method of moments estimator to directly estimate parameters from which the dynamics can be extracted.
arXiv Detail & Related papers (2023-01-23T16:07:57Z) - Introduction to Online Control [34.77535508151501]
In online nonstochastic control, both the cost functions as well as the perturbations from the assumed dynamical model are chosen by an adversary.<n>The target is to attain low regret against the best policy in hindsight from a benchmark class of policies.
arXiv Detail & Related papers (2022-11-17T16:12:45Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - Learning over All Stabilizing Nonlinear Controllers for a
Partially-Observed Linear System [4.3012765978447565]
We propose a parameterization of nonlinear output feedback controllers for linear dynamical systems.
Our approach guarantees the closed-loop stability of partially observable linear dynamical systems without requiring any constraints to be satisfied.
arXiv Detail & Related papers (2021-12-08T10:43:47Z) - Imitation Learning of Stabilizing Policies for Nonlinear Systems [1.52292571922932]
It is shown that the methods developed for linear systems and controllers can be readily extended to controllers using sum of squares.
A projected gradient descent algorithm and an alternating direction method of algorithm are proposed ass for the stabilizing imitation learning problem.
arXiv Detail & Related papers (2021-09-22T17:27:19Z) - Non-stationary Online Learning with Memory and Non-stochastic Control [71.14503310914799]
We study the problem of Online Convex Optimization (OCO) with memory, which allows loss functions to depend on past decisions.
In this paper, we introduce dynamic policy regret as the performance measure to design algorithms robust to non-stationary environments.
We propose a novel algorithm for OCO with memory that provably enjoys an optimal dynamic policy regret in terms of time horizon, non-stationarity measure, and memory length.
arXiv Detail & Related papers (2021-02-07T09:45:15Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
We study model-based reinforcement learning (RL) in unknown stabilizable linear dynamical systems.
We propose an algorithm that certifies fast stabilization of the underlying system by effectively exploring the environment.
We show that the proposed algorithm attains $tildemathcalO(sqrtT)$ regret after $T$ time steps of agent-environment interaction.
arXiv Detail & Related papers (2020-07-23T23:06:40Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.