TGraphX: Tensor-Aware Graph Neural Network for Multi-Dimensional Feature Learning
- URL: http://arxiv.org/abs/2504.03953v1
- Date: Fri, 04 Apr 2025 21:38:20 GMT
- Title: TGraphX: Tensor-Aware Graph Neural Network for Multi-Dimensional Feature Learning
- Authors: Arash Sajjadi, Mark Eramian,
- Abstract summary: TGraphX presents a novel paradigm in deep learning by unifying convolutional neural networks (CNNs) with graph neural networks (GNNs) to enhance visual reasoning tasks.<n>Traditional CNNs excel at extracting rich spatial features from images but lack the inherent capability to model inter-object relationships.<n>Our approach not only bridges the gap between spatial feature extraction and relational reasoning but also demonstrates significant improvements in object detection refinement and ensemble reasoning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: TGraphX presents a novel paradigm in deep learning by unifying convolutional neural networks (CNNs) with graph neural networks (GNNs) to enhance visual reasoning tasks. Traditional CNNs excel at extracting rich spatial features from images but lack the inherent capability to model inter-object relationships. Conversely, conventional GNNs typically rely on flattened node features, thereby discarding vital spatial details. TGraphX overcomes these limitations by employing CNNs to generate multi-dimensional node features (e.g., (3*128*128) tensors) that preserve local spatial semantics. These spatially aware nodes participate in a graph where message passing is performed using 1*1 convolutions, which fuse adjacent features while maintaining their structure. Furthermore, a deep CNN aggregator with residual connections is used to robustly refine the fused messages, ensuring stable gradient flow and end-to-end trainability. Our approach not only bridges the gap between spatial feature extraction and relational reasoning but also demonstrates significant improvements in object detection refinement and ensemble reasoning.
Related papers
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
We propose a novel CNN2GNN framework to unify CNN and GNN together via distillation.
The performance of distilled boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
arXiv Detail & Related papers (2024-04-23T08:19:08Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
Graph neural networks (GNNs) are widely used in domains like social networks and biological systems.
locality assumption of GNNs hampers their ability to capture long-range dependencies and global patterns in graphs.
We propose a new inductive bias based on variational analysis, drawing inspiration from the Brachchronistoe problem.
arXiv Detail & Related papers (2023-07-01T04:44:43Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
We propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting.
Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes.
Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block.
arXiv Detail & Related papers (2022-06-07T09:08:35Z) - HPGNN: Using Hierarchical Graph Neural Networks for Outdoor Point Cloud
Processing [0.7649716717097428]
Motivated by recent improvements in point cloud processing for autonomous navigation, we focus on using hierarchical graph neural networks for processing.
We propose Hierarchical Point Graph Neural Network (HPGNN)
It learns node features at various levels of graph coarseness to extract information.
This enables to learn over a large point cloud while retaining fine details that existing point-level graph networks struggle to achieve.
arXiv Detail & Related papers (2022-06-05T11:18:09Z) - AdaGNN: A multi-modal latent representation meta-learner for GNNs based
on AdaBoosting [0.38073142980733]
Graph Neural Networks (GNNs) focus on extracting intrinsic network features.
We propose boosting-based meta learner for GNNs.
AdaGNN performs exceptionally well for applications with rich and diverse node neighborhood information.
arXiv Detail & Related papers (2021-08-14T03:07:26Z) - Improving Graph Neural Networks with Simple Architecture Design [7.057970273958933]
We introduce several key design strategies for graph neural networks.
We present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN)
We show that the proposed model outperforms other state of the art GNN models and achieves up to 64% improvements in accuracy on node classification tasks.
arXiv Detail & Related papers (2021-05-17T06:46:01Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.